

 Navigation

 	
 modules

 	
 next |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Borg Documentation

[image: BorgBackup Installation and Basic Usage] [https://asciinema.org/a/28691?autoplay=1&speed=2]

What is BorgBackup?

BorgBackup (short: Borg) is a deduplicating backup program.
Optionally, it supports compression and authenticated encryption.

The main goal of Borg is to provide an efficient and secure way to backup data.
The data deduplication technique used makes Borg suitable for daily backups
since only changes are stored.
The authenticated encryption technique makes it suitable for backups to not
fully trusted targets.

See the installation manual [https://borgbackup.readthedocs.org/en/stable/installation.html] or, if you have already
downloaded Borg, docs/installation.rst to get started with Borg.

Main features

	Space efficient storage

	Deduplication based on content-defined chunking is used to reduce the number
of bytes stored: each file is split into a number of variable length chunks
and only chunks that have never been seen before are added to the repository.

To deduplicate, all the chunks in the same repository are considered, no
matter whether they come from different machines, from previous backups,
from the same backup or even from the same single file.

Compared to other deduplication approaches, this method does NOT depend on:

	file/directory names staying the same: So you can move your stuff around
without killing the deduplication, even between machines sharing a repo.

	complete files or time stamps staying the same: If a big file changes a
little, only a few new chunks need to be stored - this is great for VMs or
raw disks.

	The absolute position of a data chunk inside a file: Stuff may get shifted
and will still be found by the deduplication algorithm.

	Speed

	
	performance critical code (chunking, compression, encryption) is
implemented in C/Cython

	local caching of files/chunks index data

	quick detection of unmodified files

	Data encryption

	All data can be protected using 256-bit AES encryption, data integrity and
authenticity is verified using HMAC-SHA256. Data is encrypted clientside.

	Compression

	All data can be compressed by lz4 (super fast, low compression), zlib
(medium speed and compression) or lzma (low speed, high compression).

	Off-site backups

	Borg can store data on any remote host accessible over SSH. If Borg is
installed on the remote host, big performance gains can be achieved
compared to using a network filesystem (sshfs, nfs, ...).

	Backups mountable as filesystems

	Backup archives are mountable as userspace filesystems for easy interactive
backup examination and restores (e.g. by using a regular file manager).

	Easy installation on multiple platforms

	We offer single-file binaries that do not require installing anything -
you can just run them on these platforms:

	Linux

	Mac OS X

	FreeBSD

	OpenBSD and NetBSD (no xattrs/ACLs support or binaries yet)

	Cygwin (not supported, no binaries yet)

	Free and Open Source Software

	
	security and functionality can be audited independently

	licensed under the BSD (3-clause) license

Easy to use

Initialize a new backup repository and create a backup archive:

$ borg init /path/to/repo
$ borg create /path/to/repo::Saturday1 ~/Documents

Now doing another backup, just to show off the great deduplication:

$ borg create -v --stats /path/to/repo::Saturday2 ~/Documents

Archive name: Saturday2
Archive fingerprint: 622b7c53c...
Time (start): Sat, 2016-02-27 14:48:13
Time (end): Sat, 2016-02-27 14:48:14
Duration: 0.88 seconds
Number of files: 163

 Original size Compressed size Deduplicated size
This archive: 6.85 MB 6.85 MB 30.79 kB <-- !
All archives: 13.69 MB 13.71 MB 6.88 MB

 Unique chunks Total chunks
Chunk index: 167 330

For a graphical frontend refer to our complementary project BorgWeb [https://borgweb.readthedocs.io/].

Checking Release Authenticity and Security Contact

Releases [https://github.com/borgbackup/borg/releases] are signed with this GPG key,
please use GPG to verify their authenticity.

In case you discover a security issue, please use this contact for reporting it privately
and please, if possible, use encrypted E-Mail:

Thomas Waldmann <tw@waldmann-edv.de>

GPG Key Fingerprint: 6D5B EF9A DD20 7580 5747 B70F 9F88 FB52 FAF7 B393

The public key can be fetched from any GPG keyserver, but be careful: you must
use the full fingerprint to check that you got the correct key.

Links

	Main Web Site [https://borgbackup.readthedocs.org/]

	Releases [https://github.com/borgbackup/borg/releases],
PyPI packages [https://pypi.python.org/pypi/borgbackup] and
ChangeLog [https://github.com/borgbackup/borg/blob/master/docs/changes.rst]

	GitHub [https://github.com/borgbackup/borg],
Issue Tracker [https://github.com/borgbackup/borg/issues] and
Bounties & Fundraisers [https://www.bountysource.com/teams/borgbackup]

	Web-Chat (IRC) [http://webchat.freenode.net/?randomnick=1&channels=%23borgbackup&uio=MTY9dHJ1ZSY5PXRydWUa8] and
Mailing List [https://mail.python.org/mailman/listinfo/borgbackup]

	License [https://borgbackup.readthedocs.org/en/stable/authors.html#license]

Notes

Borg is a fork of Attic [https://github.com/jborg/attic] and maintained by “The Borg collective [https://borgbackup.readthedocs.org/en/latest/authors.html]”.

Differences between Attic and Borg

Here’s a (incomplete) list of some major changes:

	more open, faster paced development (see issue #1 [https://github.com/borgbackup/borg/issues/1])

	lots of attic issues fixed (see issue #5 [https://github.com/borgbackup/borg/issues/5])

	less chunk management overhead (less memory and disk usage for chunks index)

	faster remote cache resync (useful when backing up multiple machines into same repo)

	compression: no, lz4, zlib or lzma compression, adjustable compression levels

	repokey replaces problematic passphrase mode (you can’t change the passphrase nor the pbkdf2 iteration count in “passphrase” mode)

	simple sparse file support, great for virtual machine disk files

	can read special files (e.g. block devices) or from stdin, write to stdout

	mkdir-based locking is more compatible than attic’s posix locking

	uses fadvise to not spoil / blow up the fs cache

	better error messages / exception handling

	better logging, screen output, progress indication

	tested on misc. Linux systems, 32 and 64bit, FreeBSD, OpenBSD, NetBSD, Mac OS X

Please read the ChangeLog [https://github.com/borgbackup/borg/blob/master/docs/changes.rst] (or docs/changes.rst in the source distribution) for more
information.

BORG IS NOT COMPATIBLE WITH ORIGINAL ATTIC (but there is a one-way conversion).

EXPECT THAT WE WILL BREAK COMPATIBILITY REPEATEDLY WHEN MAJOR RELEASE NUMBER
CHANGES (like when going from 0.x.y to 1.0.0 or from 1.x.y to 2.0.0).

NOT RELEASED DEVELOPMENT VERSIONS HAVE UNKNOWN COMPATIBILITY PROPERTIES.

THIS IS SOFTWARE IN DEVELOPMENT, DECIDE YOURSELF WHETHER IT FITS YOUR NEEDS.

Borg is distributed under a 3-clause BSD license, see License [https://borgbackup.readthedocs.org/en/stable/authors.html#license] for the complete license.

[image: Documentation] [https://borgbackup.readthedocs.org/en/stable/] [image: Build Status] [https://travis-ci.org/borgbackup/borg] [image: Test Coverage] [https://codecov.io/github/borgbackup/borg?branch=master] [image: Best Practices Score] [https://bestpractices.coreinfrastructure.org/projects/271]

	Installation
	Distribution Package

	Standalone Binary

	Features & platforms

	From Source

	Quick Start
	Important note about free space

	A step by step example

	Automating backups

	Pitfalls with shell variables and environment variables

	Backup compression

	Repository encryption

	Remote repositories

	Usage
	General

	borg init

	borg create

	borg extract

	borg check

	borg rename

	borg list

	borg delete

	borg prune

	borg info

	borg mount

	borg key export

	borg key import

	borg change-passphrase

	borg serve

	borg upgrade

	borg break-lock

	Miscellaneous Help

	Debug Commands

	Additional Notes

	Deployment
	Machines

	User and group

	Folders

	Restrictions

	Client

	Ansible

	Enhancements

	See also

	Frequently asked questions
	Can I backup VM disk images?

	Can I backup from multiple servers into a single repository?

	Can I copy or synchronize my repo to another location?

	Which file types, attributes, etc. are not preserved?

	Are there other known limitations?

	Why is my backup bigger than with attic? Why doesn’t Borg do compression by default?

	How can I specify the encryption passphrase programmatically?

	When backing up to remote encrypted repos, is encryption done locally?

	When backing up to remote servers, do I have to trust the remote server?

	How can I protect against a hacked backup client?

	How can I protect against a hacked backup server?

	How can I protect against theft, sabotage, lightning, fire, ...?

	Why do I get “connection closed by remote” after a while?

	Why am I seeing idle borg serve processes on the repo server?

	The borg cache eats way too much disk space, what can I do?

	If a backup stops mid-way, does the already-backed-up data stay there?

	How can I backup huge file(s) over a unstable connection?

	If it crashes with a UnicodeError, what can I do?

	I can’t extract non-ascii filenames by giving them on the commandline!?

	Can Borg add redundancy to the backup data to deal with hardware malfunction?

	Can Borg verify data integrity of a backup archive?

	I am seeing ‘A’ (added) status for a unchanged file!?

	It always chunks all my files, even unchanged ones!

	Is there a way to limit bandwidth with Borg?

	I am having troubles with some network/FUSE/special filesystem, why?

	Requirements for the borg single-file binary, esp. (g)libc?

	Why was Borg forked from Attic?

	Support
	Issue Tracker

	Chat (IRC)

	Mailing list

	Bounties and Fundraisers

	Resources
	Videos, Talks, Presentations

	Software

	Changelog
	Important note about pre-1.0.4 potential repo corruption

	Version 1.0.8 (2016-10-29)

	Version 1.0.8rc1 (2016-10-17)

	Version 1.0.7 (2016-08-19)

	Version 1.0.7rc2 (2016-08-13)

	Version 1.0.7rc1 (2016-08-05)

	Version 1.0.6 (2016-07-12)

	Version 1.0.6rc1 (2016-07-10)

	Version 1.0.5 (2016-07-07)

	Version 1.0.4 (2016-07-07)

	Version 1.0.3 (2016-05-20)

	Version 1.0.2 (2016-04-16)

	Version 1.0.1 (2016-04-08)

	Version 1.0.0 (2016-03-05)

	Version 1.0.0rc2 (2016-02-28)

	Version 1.0.0rc1 (2016-02-07)

	Version 0.30.0 (2016-01-23)

	Version 0.29.0 (2015-12-13)

	Version 0.28.2 (2015-11-15)

	Version 0.28.1 (2015-11-08)

	Version 0.28.0 (2015-11-08)

	Version 0.27.0 (2015-10-07)

	Version 0.26.1 (2015-09-28)

	Version 0.26.0 (2015-09-19)

	Version 0.25.0 (2015-08-29)

	Version 0.24.0 (2015-08-09)

	Version 0.23.0 (2015-06-11)

	Attic Changelog

	Internals
	Repository and Archives

	Lock files

	Config file

	Keys

	Segments and archives

	The manifest

	The Archive

	The Item

	Chunks

	Indexes / Caches

	Indexes / Caches memory usage

	Encryption

	Key files

	Compression

	Development
	Contributions

	Style guide

	Continuous Integration

	Output and Logging

	Building a development environment

	Running the tests

	Regenerate usage files

	Building the docs with Sphinx

	Using Vagrant

	Creating standalone binaries

	Creating a new release

	Borg Contributors (“The Borg Collective”)
	Attic authors

	License

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Installation

There are different ways to install Borg:

	Distribution Package - easy and fast if a package is
available from your distribution.

	Standalone Binary - easy and fast, we provide a ready-to-use binary file
that comes bundled with all dependencies.

	From Source, either:
	Using pip - installing a source package with pip needs
more installation steps and requires all dependencies with
development headers and a compiler.

	Using git - for developers and power users who want to
have the latest code or use revision control (each release is
tagged).

Distribution Package

Some distributions might offer a ready-to-use borgbackup
package which can be installed with the package manager. As Borg is
still a young project, such a package might be not available for your system
yet.

	Distribution
	Source
	Command

	Arch Linux
	[community] [https://www.archlinux.org/packages/?name=borg]
	pacman -S borg

	Debian
	stretch [https://packages.debian.org/stretch/borgbackup], unstable/sid [https://packages.debian.org/sid/borgbackup]
	apt install borgbackup

	NetBSD
	pkgsrc [http://pkgsrc.se/sysutils/py-borgbackup]
	pkg_add py-borgbackup

	NixOS
	.nix file [https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/backup/borg/default.nix]
	N/A

	OS X
	Brew cask [http://caskroom.io/]
	brew cask install borgbackup

	Ubuntu
	Xenial 16.04 [https://launchpad.net/ubuntu/xenial/+source/borgbackup], Wily 15.10 (backport PPA) [https://launchpad.net/~costamagnagianfranco/+archive/ubuntu/borgbackup]
	apt install borgbackup

	Ubuntu
	Trusty 14.04 (backport PPA) [https://launchpad.net/~costamagnagianfranco/+archive/ubuntu/borgbackup]
	apt install borgbackup

Please ask package maintainers to build a package or, if you can package /
submit it yourself, please help us with that! See #105 [https://github.com/borgbackup/borg/issues/105] on
github to followup on packaging efforts.

If a package is available, it might be interesting to check its version
and compare that to our latest release and review the Changelog.

Standalone Binary

Borg binaries (generated with pyinstaller [http://www.pyinstaller.org]) are available
on the releases [https://github.com/borgbackup/borg/releases] page for the following platforms:

	Linux: glibc >= 2.13 (ok for most supported Linux releases). Maybe older
glibc versions also work, if they are compatible to 2.13.

	Mac OS X: 10.10 (does not work with older OS X releases)

	FreeBSD: 10.2 (unknown whether it works for older releases)

To install such a binary, just drop it into a directory in your PATH,
make borg readable and executable for its users and then you can run borg:

sudo cp borg-linux64 /usr/local/bin/borg
sudo chown root:root /usr/local/bin/borg
sudo chmod 755 /usr/local/bin/borg

Note that the binary uses /tmp to unpack Borg with all dependencies.
It will fail if /tmp has not enough free space or is mounted with the noexec option.
You can change the temporary directory by setting the TEMP environment variable before running Borg.

If a new version is released, you will have to manually download it and replace
the old version using the same steps as shown above.

Features & platforms

Besides regular file and directory structures, Borg can preserve

	Hardlinks (considering all files in the same archive)

	Symlinks (stored as symlink, the symlink is not followed)

	Special files:

	Character and block device files (restored via mknod)

	FIFOs (“named pipes”)

	Special file contents can be backed up in --read-special mode.
By default the metadata to create them with mknod(2), mkfifo(2) etc. is stored.

	Timestamps in nanosecond precision: mtime, atime, ctime

	Permissions:

	IDs of owning user and owning group

	Names of owning user and owning group (if the IDs can be resolved)

	Unix Mode/Permissions (u/g/o permissions, suid, sgid, sticky)

On some platforms additional features are supported:

	Platform
	ACLs
[1]
	xattr
[5]
	Flags
[6]

	Linux x86
	Yes
	Yes
	No

	Linux PowerPC

	Linux ARM

	Mac OS X
	Yes
	Yes
	Yes (all)

	FreeBSD
	Yes
	Yes

	OpenBSD
	n/a
	n/a

	NetBSD
	n/a
	No [2]

	Solaris 11
	No [3]
	n/a

	OpenIndiana

	Windows (cygwin)
	No [4]
	No
	No

Some Distributions (e.g. Debian) run additional tests after each release, these
are not reflected here.

Other Unix-like operating systems may work as well, but have not been tested at all.

Note that most of the platform-dependent features also depend on the file system.
For example, ntfs-3g on Linux isn’t able to convey NTFS ACLs.

	[2]	Feature request #1332 [https://github.com/borgbackup/borg/issues/1332]

	[3]	Feature request #1337 [https://github.com/borgbackup/borg/issues/1337]

	[4]	Cygwin tries to map NTFS ACLs to permissions with varying degress of success.

	[1]	The native access control list mechanism of the OS. This normally limits access to
non-native ACLs. For example, NTFS ACLs aren’t completely accessible on Linux with ntfs-3g.

	[5]	extended attributes; key-value pairs attached to a file, mainly used by the OS.
This includes resource forks on Mac OS X.

	[6]	aka BSD flags.

From Source

Dependencies

To install Borg from a source package (including pip), you have to install the
following dependencies first:

	Python 3 [https://www.python.org/] >= 3.4.0, plus development headers. Even though Python 3 is not
the default Python version on most systems, it is usually available as an
optional install.

	OpenSSL [https://www.openssl.org/] >= 1.0.0, plus development headers.

	libacl [https://savannah.nongnu.org/projects/acl/] (that pulls in libattr [https://savannah.nongnu.org/projects/attr/] also), both plus development headers.

	liblz4 [https://github.com/Cyan4973/lz4], plus development headers.

	some Python dependencies, pip will automatically install them for you

	optionally, the llfuse [https://pypi.python.org/pypi/llfuse/] Python package is required if you wish to mount an
archive as a FUSE filesystem. See setup.py about the version requirements.

If you have troubles finding the right package names, have a look at the
distribution specific sections below and also at the Vagrantfile in our repo.

In the following, the steps needed to install the dependencies are listed for a
selection of platforms. If your distribution is not covered by these
instructions, try to use your package manager to install the dependencies. On
FreeBSD, you may need to get a recent enough OpenSSL version from FreeBSD
ports.

After you have installed the dependencies, you can proceed with steps outlined
under Using pip.

Debian / Ubuntu

Install the dependencies with development headers:

sudo apt-get install python3 python3-dev python3-pip python-virtualenv \
libssl-dev openssl \
libacl1-dev libacl1 \
liblz4-dev liblz4-1 \
build-essential
sudo apt-get install libfuse-dev fuse pkg-config # optional, for FUSE support

In case you get complaints about permission denied on /etc/fuse.conf: on
Ubuntu this means your user is not in the fuse group. Add yourself to that
group, log out and log in again.

Fedora / Korora

Install the dependencies with development headers:

sudo dnf install python3 python3-devel python3-pip python3-virtualenv
sudo dnf install openssl-devel openssl
sudo dnf install libacl-devel libacl
sudo dnf install lz4-devel
sudo dnf install gcc gcc-c++
sudo dnf install fuse-devel fuse pkgconfig # optional, for FUSE support

Mac OS X

Assuming you have installed homebrew [http://brew.sh/], the following steps will install all the
dependencies:

brew install python3 lz4 openssl
brew install pkg-config # optional, for FUSE support
pip3 install virtualenv

For FUSE support to mount the backup archives, you need at least version 3.0 of
FUSE for OS X, which is available as a pre-release [https://github.com/osxfuse/osxfuse/releases].

FreeBSD

Listed below are packages you will need to install Borg, its dependencies,
and commands to make fuse work for using the mount command.

pkg install -y python3 openssl liblz4 fusefs-libs pkgconf
pkg install -y git
python3.4 -m ensurepip # to install pip for Python3
To use the mount command:
echo 'fuse_load="YES"' >> /boot/loader.conf
echo 'vfs.usermount=1' >> /etc/sysctl.conf
kldload fuse
sysctl vfs.usermount=1

Cygwin

Note

Running under Cygwin is experimental and has only been tested with Cygwin
(x86-64) v2.5.2.

Use the Cygwin installer to install the dependencies:

python3 python3-setuptools
binutils gcc-g++
libopenssl openssl-devel
liblz4_1 liblz4-devel
git make openssh

You can then install pip and virtualenv:

easy_install-3.4 pip
pip install virtualenv

Using pip

Virtualenv [https://pypi.python.org/pypi/virtualenv/] can be used to build and install Borg without affecting
the system Python or requiring root access. Using a virtual environment is
optional, but recommended except for the most simple use cases.

Note

If you install into a virtual environment, you need to activate it
first (source borg-env/bin/activate), before running borg.
Alternatively, symlink borg-env/bin/borg into some directory that is in
your PATH so you can just run borg.

This will use pip to install the latest release from PyPi:

virtualenv --python=python3 borg-env
source borg-env/bin/activate

install Borg + Python dependencies into virtualenv
pip install borgbackup
or alternatively (if you want FUSE support):
pip install borgbackup[fuse]

To upgrade Borg to a new version later, run the following after
activating your virtual environment:

pip install -U borgbackup # or ... borgbackup[fuse]

Using git

This uses latest, unreleased development code from git.
While we try not to break master, there are no guarantees on anything.

get borg from github
git clone https://github.com/borgbackup/borg.git

virtualenv --python=python3 borg-env
source borg-env/bin/activate # always before using!

install borg + dependencies into virtualenv
pip install sphinx # optional, to build the docs
cd borg
pip install -r requirements.d/development.txt
pip install -r requirements.d/fuse.txt # optional, for FUSE support
pip install -e . # in-place editable mode

optional: run all the tests, on all supported Python versions
requires fakeroot, available through your package manager
fakeroot -u tox

Note

As a developer or power user, you always want to use a virtual environment.

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Quick Start

This chapter will get you started with Borg. The first section
presents a simple step by step example that uses Borg to backup data.
The next section continues by showing how backups can be automated.

Important note about free space

Before you start creating backups, please make sure that there is always
a good amount of free space on the filesystem that has your backup repository
(and also on ~/.cache). A few GB should suffice for most hard-drive sized
repositories. See also Indexes / Caches memory usage.

If Borg runs out of disk space, it tries to free as much space as it
can while aborting the current operation safely, which allows to free more space
by deleting/pruning archives. This mechanism is not bullet-proof though.
If you really run out of disk space, it can be hard or impossible to free space,
because Borg needs free space to operate - even to delete backup
archives. There is a --save-space option for some commands, but even with
that Borg will need free space to operate.

You can use some monitoring process or just include the free space information
in your backup log files (you check them regularly anyway, right?).

Also helpful:

	create a big file as a “space reserve”, that you can delete to free space

	if you use LVM: use a LV + a filesystem that you can resize later and have
some unallocated PEs you can add to the LV.

	consider using quotas

	use prune regularly

A step by step example

	Before a backup can be made a repository has to be initialized:

$ borg init /path/to/repo

	Backup the ~/src and ~/Documents directories into an archive called
Monday:

$ borg create /path/to/repo::Monday ~/src ~/Documents

	The next day create a new archive called Tuesday:

$ borg create -v --stats /path/to/repo::Tuesday ~/src ~/Documents

This backup will be a lot quicker and a lot smaller since only new never
before seen data is stored. The --stats option causes Borg to
output statistics about the newly created archive such as the amount of unique
data (not shared with other archives):

--
Archive name: Tuesday
Archive fingerprint: bd31004d58f51ea06ff735d2e5ac49376901b21d58035f8fb05dbf866566e3c2
Time (start): Tue, 2016-02-16 18:15:11
Time (end): Tue, 2016-02-16 18:15:11

Duration: 0.19 seconds
Number of files: 127
--
 Original size Compressed size Deduplicated size
This archive: 4.16 MB 4.17 MB 26.78 kB
All archives: 8.33 MB 8.34 MB 4.19 MB

 Unique chunks Total chunks
Chunk index: 132 261
--

	List all archives in the repository:

$ borg list /path/to/repo
Monday Mon, 2016-02-15 19:14:44
Tuesday Tue, 2016-02-16 19:15:11

	List the contents of the Monday archive:

$ borg list /path/to/repo::Monday
drwxr-xr-x user group 0 Mon, 2016-02-15 18:22:30 home/user/Documents
-rw-r--r-- user group 7961 Mon, 2016-02-15 18:22:30 home/user/Documents/Important.doc
...

	Restore the Monday archive:

$ borg extract /path/to/repo::Monday

	Recover disk space by manually deleting the Monday archive:

$ borg delete /path/to/repo::Monday

Note

Borg is quiet by default (it works on WARNING log level).
Add the -v (or --verbose or --info) option to adjust the log
level to INFO and also use options like --progress or --list to
get progress reporting during command execution.

Automating backups

The following example script backs up /home and /var/www to a remote
server. The script also uses the borg prune subcommand to maintain a
certain number of old archives:

#!/bin/sh
REPOSITORY=username@remoteserver.com:backup

Backup all of /home and /var/www except a few
excluded directories
borg create -v --stats \
 $REPOSITORY::'{hostname}-{now:%Y-%m-%d}' \
 /home \
 /var/www \
 --exclude '/home/*/.cache' \
 --exclude /home/Ben/Music/Justin\ Bieber \
 --exclude '*.pyc'

Use the `prune` subcommand to maintain 7 daily, 4 weekly and 6 monthly
archives of THIS machine. The '{hostname}-' prefix is very important to
limit prune's operation to this machine's archives and not apply to
other machine's archives also.
borg prune -v $REPOSITORY --prefix '{hostname}-' \
 --keep-daily=7 --keep-weekly=4 --keep-monthly=6

Pitfalls with shell variables and environment variables

This applies to all environment variables you want borg to see, not just
BORG_PASSPHRASE. The short explanation is: always export your variable,
and use single quotes if you’re unsure of the details of your shell’s expansion
behavior. E.g.:

export BORG_PASSPHRASE='complicated & long'

This is because export exposes variables to subprocesses, which borg may be
one of. More on export can be found in the “ENVIRONMENT” section of the
bash(1) man page.

Beware of how sudo interacts with environment variables. For example, you
may be surprised that the following export has no effect on your command:

export BORG_PASSPHRASE='complicated & long'
sudo ./yourborgwrapper.sh # still prompts for password

For more information, see sudo(8) man page. Hint: see env_keep in
sudoers(5), or try sudo BORG_PASSPHRASE='yourphrase' borg syntax.

Tip

To debug what your borg process is actually seeing, find its PID
(ps aux|grep borg) and then look into /proc/<PID>/environ.

Backup compression

Default is no compression, but we support different methods with high speed
or high compression:

If you have a fast repo storage and you want some compression:

$ borg create --compression lz4 /path/to/repo::arch ~

If you have a less fast repo storage and you want a bit more compression (N=0..9,
0 means no compression, 9 means high compression):

$ borg create --compression zlib,N /path/to/repo::arch ~

If you have a very slow repo storage and you want high compression (N=0..9, 0 means
low compression, 9 means high compression):

$ borg create --compression lzma,N /path/to/repo::arch ~

You’ll need to experiment a bit to find the best compression for your use case.
Keep an eye on CPU load and throughput.

Repository encryption

Repository encryption can be enabled or disabled at repository creation time
(the default is enabled, with repokey method):

$ borg init --encryption=none|repokey|keyfile PATH

When repository encryption is enabled all data is encrypted using 256-bit AES [https://en.wikipedia.org/wiki/Advanced_Encryption_Standard]
encryption and the integrity and authenticity is verified using HMAC-SHA256 [https://en.wikipedia.org/wiki/HMAC].

All data is encrypted on the client before being written to the repository. This
means that an attacker who manages to compromise the host containing an
encrypted archive will not be able to access any of the data, even while the backup
is being made.

Borg supports different methods to store the AES and HMAC keys.

	repokey mode

	The key is stored inside the repository (in its “config” file).
Use this mode if you trust in your good passphrase giving you enough
protection. The repository server never sees the plaintext key.

	keyfile mode

	The key is stored on your local disk (in ~/.config/borg/keys/).
Use this mode if you want “passphrase and having-the-key” security.

In both modes, the key is stored in encrypted form and can be only decrypted
by providing the correct passphrase.

For automated backups the passphrase can be specified using the
BORG_PASSPHRASE environment variable.

Note

Be careful about how you set that environment, see
this note about password environments
for more information.

Warning

The repository data is totally inaccessible without the key
and the key passphrase.

Make a backup copy of the key file (keyfile mode) or repo config
file (repokey mode) and keep it at a safe place, so you still have
the key in case it gets corrupted or lost. Also keep your passphrase
at a safe place.

You can make backups using borg key export subcommand.

If you want to print a backup of your key to paper use the --paper
option of this command and print the result.

A backup inside of the backup that is encrypted with that key/passphrase
won’t help you with that, of course.

Remote repositories

Borg can initialize and access repositories on remote hosts if the
host is accessible using SSH. This is fastest and easiest when Borg
is installed on the remote host, in which case the following syntax is used:

$ borg init user@hostname:/path/to/repo

Note: please see the usage chapter for a full documentation of repo URLs.

Remote operations over SSH can be automated with SSH keys. You can restrict the
use of the SSH keypair by prepending a forced command to the SSH public key in
the remote server’s authorized_keys file. This example will start Borg
in server mode and limit it to a specific filesystem path:

command="borg serve --restrict-to-path /path/to/repo",no-pty,no-agent-forwarding,no-port-forwarding,no-X11-forwarding,no-user-rc ssh-rsa AAAAB3[...]

If it is not possible to install Borg on the remote host,
it is still possible to use the remote host to store a repository by
mounting the remote filesystem, for example, using sshfs:

$ sshfs user@hostname:/path/to /path/to
$ borg init /path/to/repo
$ fusermount -u /path/to

You can also use other remote filesystems in a similar way. Just be careful,
not all filesystems out there are really stable and working good enough to
be acceptable for backup usage.

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Usage

Borg consists of a number of commands. Each command accepts
a number of arguments and options. The following sections will describe each
command in detail.

General

Repository URLs

Local filesystem (or locally mounted network filesystem):

/path/to/repo - filesystem path to repo directory, absolute path

path/to/repo - filesystem path to repo directory, relative path

Also, stuff like ~/path/to/repo or ~other/path/to/repo works (this is
expanded by your shell).

Note: you may also prepend a file:// to a filesystem path to get URL style.

Remote repositories accessed via ssh user@host:

user@host:/path/to/repo - remote repo, absolute path

ssh://user@host:port/path/to/repo - same, alternative syntax, port can be given

Remote repositories with relative pathes can be given using this syntax:

user@host:path/to/repo - path relative to current directory

user@host:~/path/to/repo - path relative to user’s home directory

user@host:~other/path/to/repo - path relative to other’s home directory

Note: giving user@host:/./path/to/repo or user@host:/~/path/to/repo or
``user@host:/~other/path/to/repo``is also supported, but not required here.

Remote repositories with relative pathes, alternative syntax with port:

ssh://user@host:port/./path/to/repo - path relative to current directory

ssh://user@host:port/~/path/to/repo - path relative to user’s home directory

ssh://user@host:port/~other/path/to/repo - path relative to other’s home directory

If you frequently need the same repo URL, it is a good idea to set the
BORG_REPO environment variable to set a default for the repo URL:

export BORG_REPO='ssh://user@host:port/path/to/repo'

Then just leave away the repo URL if only a repo URL is needed and you want
to use the default - it will be read from BORG_REPO then.

Use :: syntax to give the repo URL when syntax requires giving a positional
argument for the repo (e.g. borg mount :: /mnt).

Repository / Archive Locations

Many commands want either a repository (just give the repo URL, see above) or
an archive location, which is a repo URL followed by ::archive_name.

Archive names must not contain the / (slash) character. For simplicity,
maybe also avoid blanks or other characters that have special meaning on the
shell or in a filesystem (borg mount will use the archive name as directory
name).

If you have set BORG_REPO (see above) and an archive location is needed, use
::archive_name - the repo URL part is then read from BORG_REPO.

Type of log output

The log level of the builtin logging configuration defaults to WARNING.
This is because we want Borg to be mostly silent and only output
warnings, errors and critical messages.

Log levels: DEBUG < INFO < WARNING < ERROR < CRITICAL

Use --debug to set DEBUG log level -
to get debug, info, warning, error and critical level output.

Use --info (or -v or --verbose) to set INFO log level -
to get info, warning, error and critical level output.

Use --warning (default) to set WARNING log level -
to get warning, error and critical level output.

Use --error to set ERROR log level -
to get error and critical level output.

Use --critical to set CRITICAL log level -
to get critical level output.

While you can set misc. log levels, do not expect that every command will
give different output on different log levels - it’s just a possibility.

Warning

Options –critical and –error are provided for completeness,
their usage is not recommended as you might miss important information.

Warning

While some options (like --stats or --list) will emit more
informational messages, you have to use INFO (or lower) log level to make
them show up in log output. Use -v or a logging configuration.

Return codes

Borg can exit with the following return codes (rc):

0 = success (logged as INFO)
1 = warning (operation reached its normal end, but there were warnings -
 you should check the log, logged as WARNING)
2 = error (like a fatal error, a local or remote exception, the operation
 did not reach its normal end, logged as ERROR)
128+N = killed by signal N (e.g. 137 == kill -9)

If you use --show-rc, the return code is also logged at the indicated
level as the last log entry.

Environment Variables

Borg uses some environment variables for automation:

	General:

	
	BORG_REPO

	When set, use the value to give the default repository location. If a command needs an archive
parameter, you can abbreviate as ::archive. If a command needs a repository parameter, you
can either leave it away or abbreviate as ::, if a positional parameter is required.

	BORG_PASSPHRASE

	When set, use the value to answer the passphrase question for encrypted repositories.

	BORG_DISPLAY_PASSPHRASE

	When set, use the value to answer the “display the passphrase for verification” question when defining a new passphrase for encrypted repositories.

	BORG_LOGGING_CONF

	When set, use the given filename as INI [https://docs.python.org/3.4/library/logging.config.html#configuration-file-format]-style logging configuration.

	BORG_RSH

	When set, use this command instead of ssh. This can be used to specify ssh options, such as
a custom identity file ssh -i /path/to/private/key. See man ssh for other options.

	BORG_REMOTE_PATH

	When set, use the given path/filename as remote path (default is “borg”).
Using --remote-path PATH commandline option overrides the environment variable.

	BORG_FILES_CACHE_TTL

	When set to a numeric value, this determines the maximum “time to live” for the files cache
entries (default: 20). The files cache is used to quickly determine whether a file is unchanged.
The FAQ explains this more detailled in: It always chunks all my files, even unchanged ones!

	TMPDIR

	where temporary files are stored (might need a lot of temporary space for some operations)

	Some automatic “answerers” (if set, they automatically answer confirmation questions):

	
	BORG_UNKNOWN_UNENCRYPTED_REPO_ACCESS_IS_OK=no (or =yes)

	For “Warning: Attempting to access a previously unknown unencrypted repository”

	BORG_RELOCATED_REPO_ACCESS_IS_OK=no (or =yes)

	For “Warning: The repository at location ... was previously located at ...”

	BORG_CHECK_I_KNOW_WHAT_I_AM_DOING=NO (or =YES)

	For “Warning: ‘check –repair’ is an experimental feature that might result in data loss.”

	BORG_DELETE_I_KNOW_WHAT_I_AM_DOING=NO (or =YES)

	For “You requested to completely DELETE the repository including all archives it contains:”

Note: answers are case sensitive. setting an invalid answer value might either give the default
answer or ask you interactively, depending on whether retries are allowed (they by default are
allowed). So please test your scripts interactively before making them a non-interactive script.

	Directories:

	
	BORG_KEYS_DIR

	Default to ‘~/.config/borg/keys’. This directory contains keys for encrypted repositories.

	BORG_CACHE_DIR

	Default to ‘~/.cache/borg’. This directory contains the local cache and might need a lot
of space for dealing with big repositories).

	Building:

	
	BORG_OPENSSL_PREFIX

	Adds given OpenSSL header file directory to the default locations (setup.py).

	BORG_LZ4_PREFIX

	Adds given LZ4 header file directory to the default locations (setup.py).

Please note:

	be very careful when using the “yes” sayers, the warnings with prompt exist for your / your data’s security/safety

	also be very careful when putting your passphrase into a script, make sure it has appropriate file permissions
(e.g. mode 600, root:root).

Resource Usage

Borg might use a lot of resources depending on the size of the data set it is dealing with.

	CPU:

	It won’t go beyond 100% of 1 core as the code is currently single-threaded.
Especially higher zlib and lzma compression levels use significant amounts
of CPU cycles.

	Memory (RAM):

	The chunks index and the files index are read into memory for performance
reasons.
Compression, esp. lzma compression with high levels might need substantial
amounts of memory.

	Temporary files:

	Reading data and metadata from a FUSE mounted repository will consume about
the same space as the deduplicated chunks used to represent them in the
repository.

	Cache files:

	Contains the chunks index and files index (plus a compressed collection of
single-archive chunk indexes).

	Chunks index:

	Proportional to the amount of data chunks in your repo. Lots of chunks
in your repo imply a big chunks index.
It is possible to tweak the chunker params (see create options).

	Files index:

	Proportional to the amount of files in your last backup. Can be switched
off (see create options), but next backup will be much slower if you do.

	Network:

	If your repository is remote, all deduplicated (and optionally compressed/
encrypted) data of course has to go over the connection (ssh: repo url).
If you use a locally mounted network filesystem, additionally some copy
operations used for transaction support also go over the connection. If
you backup multiple sources to one target repository, additional traffic
happens for cache resynchronization.

In case you are interested in more details, please read the internals documentation.

Units

To display quantities, Borg takes care of respecting the
usual conventions of scale. Disk sizes are displayed in decimal [https://en.wikipedia.org/wiki/Decimal], using powers of ten (so
kB means 1000 bytes). For memory usage, binary prefixes [https://en.wikipedia.org/wiki/Binary_prefix] are used, and are
indicated using the IEC binary prefixes [https://en.wikipedia.org/wiki/IEC_80000-13#Prefixes_for_binary_multiples],
using powers of two (so KiB means 1024 bytes).

Date and Time

We format date and time conforming to ISO-8601, that is: YYYY-MM-DD and
HH:MM:SS (24h clock).

For more information about that, see: https://xkcd.com/1179/

Unless otherwise noted, we display local date and time.
Internally, we store and process date and time as UTC.

borg init

usage: borg init [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [-e {none,keyfile,repokey}] [-a]
 [REPOSITORY]

Initialize an empty repository

positional arguments:
 REPOSITORY repository to create

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 -e {none,keyfile,repokey}, --encryption {none,keyfile,repokey}
 select encryption key mode (default: "repokey")
 -a, --append-only create an append-only mode repository

Description

This command initializes an empty repository. A repository is a filesystem
directory containing the deduplicated data from zero or more archives.
Encryption can be enabled at repository init time.

Examples

Local repository (default is to use encryption in repokey mode)
$ borg init /path/to/repo

Local repository (no encryption)
$ borg init --encryption=none /path/to/repo

Remote repository (accesses a remote borg via ssh)
$ borg init user@hostname:backup

Remote repository (store the key your home dir)
$ borg init --encryption=keyfile user@hostname:backup

Important notes about encryption:

It is not recommended to disable encryption. Repository encryption protects you
e.g. against the case that an attacker has access to your backup repository.

But be careful with the key / the passphrase:

If you want “passphrase-only” security, use the repokey mode. The key will
be stored inside the repository (in its “config” file). In above mentioned
attack scenario, the attacker will have the key (but not the passphrase).

If you want “passphrase and having-the-key” security, use the keyfile mode.
The key will be stored in your home directory (in .config/borg/keys). In
the attack scenario, the attacker who has just access to your repo won’t have
the key (and also not the passphrase).

Make a backup copy of the key file (keyfile mode) or repo config file
(repokey mode) and keep it at a safe place, so you still have the key in
case it gets corrupted or lost. Also keep the passphrase at a safe place.
The backup that is encrypted with that key won’t help you with that, of course.

Make sure you use a good passphrase. Not too short, not too simple. The real
encryption / decryption key is encrypted with / locked by your passphrase.
If an attacker gets your key, he can’t unlock and use it without knowing the
passphrase.

Be careful with special or non-ascii characters in your passphrase:

	Borg processes the passphrase as unicode (and encodes it as utf-8),
so it does not have problems dealing with even the strangest characters.

	BUT: that does not necessarily apply to your OS / VM / keyboard configuration.

So better use a long passphrase made from simple ascii chars than one that
includes non-ascii stuff or characters that are hard/impossible to enter on
a different keyboard layout.

You can change your passphrase for existing repos at any time, it won’t affect
the encryption/decryption key or other secrets.

borg create

usage: borg create [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [-s] [-p] [--list]
 [--filter STATUSCHARS] [-e PATTERN]
 [--exclude-from EXCLUDEFILE] [--exclude-caches]
 [--exclude-if-present FILENAME] [--keep-tag-files]
 [-c SECONDS] [-x] [--numeric-owner]
 [--timestamp yyyy-mm-ddThh:mm:ss]
 [--chunker-params CHUNK_MIN_EXP,CHUNK_MAX_EXP,HASH_MASK_BITS,HASH_WINDOW_SIZE]
 [--ignore-inode] [-C COMPRESSION] [--read-special] [-n]
 ARCHIVE PATH [PATH ...]

Create new archive

positional arguments:
 ARCHIVE name of archive to create (must be also a valid
 directory name)
 PATH paths to archive

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 -s, --stats print statistics for the created archive
 -p, --progress show progress display while creating the archive,
 showing Original, Compressed and Deduplicated sizes,
 followed by the Number of files seen and the path
 being processed, default: False
 --list output verbose list of items (files, dirs, ...)
 --filter STATUSCHARS only display items with the given status characters
 -e PATTERN, --exclude PATTERN
 exclude paths matching PATTERN
 --exclude-from EXCLUDEFILE
 read exclude patterns from EXCLUDEFILE, one per line
 --exclude-caches exclude directories that contain a CACHEDIR.TAG file
 (http://www.brynosaurus.com/cachedir/spec.html)
 --exclude-if-present FILENAME
 exclude directories that contain the specified file
 --keep-tag-files keep tag files of excluded caches/directories
 -c SECONDS, --checkpoint-interval SECONDS
 write checkpoint every SECONDS seconds (Default: 300)
 -x, --one-file-system
 stay in same file system, do not cross mount points
 --numeric-owner only store numeric user and group identifiers
 --timestamp yyyy-mm-ddThh:mm:ss
 manually specify the archive creation date/time (UTC).
 alternatively, give a reference file/directory.
 --chunker-params CHUNK_MIN_EXP,CHUNK_MAX_EXP,HASH_MASK_BITS,HASH_WINDOW_SIZE
 specify the chunker parameters. default: 19,23,21,4095
 --ignore-inode ignore inode data in the file metadata cache used to
 detect unchanged files.
 -C COMPRESSION, --compression COMPRESSION
 select compression algorithm (and level): none == no
 compression (default), lz4 == lz4, zlib == zlib
 (default level 6), zlib,0 .. zlib,9 == zlib (with
 level 0..9), lzma == lzma (default level 6), lzma,0 ..
 lzma,9 == lzma (with level 0..9).
 --read-special open and read block and char device files as well as
 FIFOs as if they were regular files. Also follows
 symlinks pointing to these kinds of files.
 -n, --dry-run do not create a backup archive

Description

This command creates a backup archive containing all files found while recursively
traversing all paths specified. The archive will consume almost no disk space for
files or parts of files that have already been stored in other archives.

The archive name needs to be unique. It must not end in ‘.checkpoint’ or
‘.checkpoint.N’ (with N being a number), because these names are used for
checkpoints and treated in special ways.

In the archive name, you may use the following format tags:
{now}, {utcnow}, {fqdn}, {hostname}, {user}, {pid}, {borgversion}

To speed up pulling backups over sshfs and similar network file systems which do
not provide correct inode information the –ignore-inode flag can be used. This
potentially decreases reliability of change detection, while avoiding always reading
all files on these file systems.

See the output of the “borg help patterns” command for more help on exclude patterns.
See the output of the “borg help placeholders” command for more help on placeholders.

Examples

Backup ~/Documents into an archive named "my-documents"
$ borg create /path/to/repo::my-documents ~/Documents

same, but verbosely list all files as we process them
$ borg create -v --list /path/to/repo::my-documents ~/Documents

Backup ~/Documents and ~/src but exclude pyc files
$ borg create /path/to/repo::my-files \
 ~/Documents \
 ~/src \
 --exclude '*.pyc'

Backup home directories excluding image thumbnails (i.e. only
/home/*/.thumbnails is excluded, not /home/*/*/.thumbnails)
$ borg create /path/to/repo::my-files /home \
 --exclude 're:^/home/[^/]+/\.thumbnails/'

Do the same using a shell-style pattern
$ borg create /path/to/repo::my-files /home \
 --exclude 'sh:/home/*/.thumbnails'

Backup the root filesystem into an archive named "root-YYYY-MM-DD"
use zlib compression (good, but slow) - default is no compression
$ borg create -C zlib,6 /path/to/repo::root-{now:%Y-%m-%d} / --one-file-system

Make a big effort in fine granular deduplication (big chunk management
overhead, needs a lot of RAM and disk space, see formula in internals
docs - same parameters as borg < 1.0 or attic):
$ borg create --chunker-params 10,23,16,4095 /path/to/repo::small /smallstuff

Backup a raw device (must not be active/in use/mounted at that time)
$ dd if=/dev/sdx bs=10M | borg create /path/to/repo::my-sdx -

No compression (default)
$ borg create /path/to/repo::arch ~

Super fast, low compression
$ borg create --compression lz4 /path/to/repo::arch ~

Less fast, higher compression (N = 0..9)
$ borg create --compression zlib,N /path/to/repo::arch ~

Even slower, even higher compression (N = 0..9)
$ borg create --compression lzma,N /path/to/repo::arch ~

Use short hostname, user name and current time in archive name
$ borg create /path/to/repo::{hostname}-{user}-{now} ~
$ borg create /path/to/repo::{hostname}-{user}-{now:%Y-%m-%d_%H:%M:%S} ~

borg extract

usage: borg extract [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [--list] [-n] [-e PATTERN]
 [--exclude-from EXCLUDEFILE] [--numeric-owner]
 [--strip-components NUMBER] [--stdout] [--sparse]
 ARCHIVE [PATH [PATH ...]]

Extract archive contents

positional arguments:
 ARCHIVE archive to extract
 PATH paths to extract; patterns are supported

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 --list output verbose list of items (files, dirs, ...)
 -n, --dry-run do not actually change any files
 -e PATTERN, --exclude PATTERN
 exclude paths matching PATTERN
 --exclude-from EXCLUDEFILE
 read exclude patterns from EXCLUDEFILE, one per line
 --numeric-owner only obey numeric user and group identifiers
 --strip-components NUMBER
 Remove the specified number of leading path elements.
 Pathnames with fewer elements will be silently
 skipped.
 --stdout write all extracted data to stdout
 --sparse create holes in output sparse file from all-zero
 chunks

Description

This command extracts the contents of an archive. By default the entire
archive is extracted but a subset of files and directories can be selected
by passing a list of PATHs as arguments. The file selection can further
be restricted by using the --exclude option.

See the output of the “borg help patterns” command for more help on exclude patterns.

Examples

Extract entire archive
$ borg extract /path/to/repo::my-files

Extract entire archive and list files while processing
$ borg extract -v --list /path/to/repo::my-files

Extract the "src" directory
$ borg extract /path/to/repo::my-files home/USERNAME/src

Extract the "src" directory but exclude object files
$ borg extract /path/to/repo::my-files home/USERNAME/src --exclude '*.o'

Restore a raw device (must not be active/in use/mounted at that time)
$ borg extract --stdout /path/to/repo::my-sdx | dd of=/dev/sdx bs=10M

	Note: currently, extract always writes into the current working directory (”.”),

	so make sure you cd to the right place before calling borg extract.

borg check

usage: borg check [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [--repository-only] [--archives-only]
 [--repair] [--save-space] [--last N] [-P PREFIX]
 [REPOSITORY_OR_ARCHIVE]

Check repository consistency

positional arguments:
 REPOSITORY_OR_ARCHIVE
 repository or archive to check consistency of

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 --repository-only only perform repository checks
 --archives-only only perform archives checks
 --repair attempt to repair any inconsistencies found
 --save-space work slower, but using less space
 --last N only check last N archives (Default: all)
 -P PREFIX, --prefix PREFIX
 only consider archive names starting with this prefix

Description

The check command verifies the consistency of a repository and the corresponding archives.

First, the underlying repository data files are checked:

	For all segments the segment magic (header) is checked

	For all objects stored in the segments, all metadata (e.g. crc and size) and
all data is read. The read data is checked by size and CRC. Bit rot and other
types of accidental damage can be detected this way.

	If we are in repair mode and a integrity error is detected for a segment,
we try to recover as many objects from the segment as possible.

	In repair mode, it makes sure that the index is consistent with the data
stored in the segments.

	If you use a remote repo server via ssh:, the repo check is executed on the
repo server without causing significant network traffic.

	The repository check can be skipped using the –archives-only option.

Second, the consistency and correctness of the archive metadata is verified:

	Is the repo manifest present? If not, it is rebuilt from archive metadata
chunks (this requires reading and decrypting of all metadata and data).

	Check if archive metadata chunk is present. if not, remove archive from
manifest.

	For all files (items) in the archive, for all chunks referenced by these
files, check if chunk is present.
If a chunk is not present and we are in repair mode, replace it with a same-size
replacement chunk of zeros.
If a previously lost chunk reappears (e.g. via a later backup) and we are in
repair mode, the all-zero replacement chunk will be replaced by the correct chunk.
This requires reading of archive and file metadata, but not data.

	If we are in repair mode and we checked all the archives: delete orphaned
chunks from the repo.

	if you use a remote repo server via ssh:, the archive check is executed on
the client machine (because if encryption is enabled, the checks will require
decryption and this is always done client-side, because key access will be
required).

	The archive checks can be time consuming, they can be skipped using the
–repository-only option.

borg rename

usage: borg rename [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH]
 ARCHIVE NEWNAME

Rename an existing archive

positional arguments:
 ARCHIVE archive to rename
 NEWNAME the new archive name to use

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")

Description

This command renames an archive in the repository.

Examples

$ borg create /path/to/repo::archivename ~
$ borg list /path/to/repo
archivename Mon, 2016-02-15 19:50:19

$ borg rename /path/to/repo::archivename newname
$ borg list /path/to/repo
newname Mon, 2016-02-15 19:50:19

borg list

usage: borg list [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [--short] [--list-format LISTFORMAT]
 [-P PREFIX]
 [REPOSITORY_OR_ARCHIVE]

List archive or repository contents

positional arguments:
 REPOSITORY_OR_ARCHIVE
 repository/archive to list contents of

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 --short only print file/directory names, nothing else
 --list-format LISTFORMAT
 specify format for archive file listing (default:
 "{mode} {user:6} {group:6} {size:8d} {isomtime}
 {path}{extra}{NEWLINE}") Special "{formatkeys}" exists
 to list available keys
 -P PREFIX, --prefix PREFIX
 only consider archive names starting with this prefix

Description

This command lists the contents of a repository or an archive.

Examples

$ borg list /path/to/repo
Monday Mon, 2016-02-15 19:15:11
repo Mon, 2016-02-15 19:26:54
root-2016-02-15 Mon, 2016-02-15 19:36:29
newname Mon, 2016-02-15 19:50:19
...

$ borg list /path/to/repo::root-2016-02-15
drwxr-xr-x root root 0 Mon, 2016-02-15 17:44:27 .
drwxrwxr-x root root 0 Mon, 2016-02-15 19:04:49 bin
-rwxr-xr-x root root 1029624 Thu, 2014-11-13 00:08:51 bin/bash
lrwxrwxrwx root root 0 Fri, 2015-03-27 20:24:26 bin/bzcmp -> bzdiff
-rwxr-xr-x root root 2140 Fri, 2015-03-27 20:24:22 bin/bzdiff
...

$ borg list /path/to/repo::archiveA --list-format="{mode} {user:6} {group:6} {size:8d} {isomtime} {path}{extra}{NEWLINE}"
drwxrwxr-x user user 0 Sun, 2015-02-01 11:00:00 .
drwxrwxr-x user user 0 Sun, 2015-02-01 11:00:00 code
drwxrwxr-x user user 0 Sun, 2015-02-01 11:00:00 code/myproject
-rw-rw-r-- user user 1416192 Sun, 2015-02-01 11:00:00 code/myproject/file.ext
...

see what is changed between archives, based on file modification time, size and file path
$ borg list /path/to/repo::archiveA --list-format="{mtime:%s}{TAB}{size}{TAB}{path}{LF}" |sort -n > /tmp/list.archiveA
$ borg list /path/to/repo::archiveB --list-format="{mtime:%s}{TAB}{size}{TAB}{path}{LF}" |sort -n > /tmp/list.archiveB
$ diff -y /tmp/list.archiveA /tmp/list.archiveB
1422781200 0 . 1422781200 0 .
1422781200 0 code 1422781200 0 code
1422781200 0 code/myproject 1422781200 0 code/myproject
1422781200 1416192 code/myproject/file.ext | 1454664653 1416192 code/myproject/file.ext
...

borg delete

usage: borg delete [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [-p] [-s] [-c] [--force]
 [--save-space]
 [TARGET]

Delete an existing repository or archive

positional arguments:
 TARGET archive or repository to delete

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 -p, --progress show progress display while deleting a single archive
 -s, --stats print statistics for the deleted archive
 -c, --cache-only delete only the local cache for the given repository
 --force force deletion of corrupted archives
 --save-space work slower, but using less space

Description

This command deletes an archive from the repository or the complete repository.
Disk space is reclaimed accordingly. If you delete the complete repository, the
local cache for it (if any) is also deleted.

Examples

delete a single backup archive:
$ borg delete /path/to/repo::Monday

delete the whole repository and the related local cache:
$ borg delete /path/to/repo
You requested to completely DELETE the repository *including* all archives it contains:
repo Mon, 2016-02-15 19:26:54
root-2016-02-15 Mon, 2016-02-15 19:36:29
newname Mon, 2016-02-15 19:50:19
Type 'YES' if you understand this and want to continue: YES

borg prune

usage: borg prune [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [-n] [--force] [-s] [--list]
 [--keep-within WITHIN] [-H HOURLY] [-d DAILY] [-w WEEKLY]
 [-m MONTHLY] [-y YEARLY] [-P PREFIX] [--save-space]
 [REPOSITORY]

Prune repository archives according to specified rules

positional arguments:
 REPOSITORY repository to prune

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 -n, --dry-run do not change repository
 --force force pruning of corrupted archives
 -s, --stats print statistics for the deleted archive
 --list output verbose list of archives it keeps/prunes
 --keep-within WITHIN keep all archives within this time interval
 -H HOURLY, --keep-hourly HOURLY
 number of hourly archives to keep
 -d DAILY, --keep-daily DAILY
 number of daily archives to keep
 -w WEEKLY, --keep-weekly WEEKLY
 number of weekly archives to keep
 -m MONTHLY, --keep-monthly MONTHLY
 number of monthly archives to keep
 -y YEARLY, --keep-yearly YEARLY
 number of yearly archives to keep
 -P PREFIX, --prefix PREFIX
 only consider archive names starting with this prefix
 --save-space work slower, but using less space

Description

The prune command prunes a repository by deleting all archives not matching
any of the specified retention options. This command is normally used by
automated backup scripts wanting to keep a certain number of historic backups.

As an example, “-d 7” means to keep the latest backup on each day, up to 7
most recent days with backups (days without backups do not count).
The rules are applied from hourly to yearly, and backups selected by previous
rules do not count towards those of later rules. The time that each backup
starts is used for pruning purposes. Dates and times are interpreted in
the local timezone, and weeks go from Monday to Sunday. Specifying a
negative number of archives to keep means that there is no limit.

The “–keep-within” option takes an argument of the form “<int><char>”,
where char is “H”, “d”, “w”, “m”, “y”. For example, “–keep-within 2d” means
to keep all archives that were created within the past 48 hours.
“1m” is taken to mean “31d”. The archives kept with this option do not
count towards the totals specified by any other options.

If a prefix is set with -P, then only archives that start with the prefix are
considered for deletion and only those archives count towards the totals
specified by the rules.
Otherwise, all archives in the repository are candidates for deletion!

Examples

Be careful, prune is a potentially dangerous command, it will remove backup
archives.

The default of prune is to apply to all archives in the repository unless
you restrict its operation to a subset of the archives using --prefix.
When using --prefix, be careful to choose a good prefix - e.g. do not use a
prefix “foo” if you do not also want to match “foobar”.

It is strongly recommended to always run prune -v --list --dry-run ...
first so you will see what it would do without it actually doing anything.

There is also a visualized prune example in docs/misc/prune-example.txt.

Keep 7 end of day and 4 additional end of week archives.
Do a dry-run without actually deleting anything.
$ borg prune -v --list --dry-run --keep-daily=7 --keep-weekly=4 /path/to/repo

Same as above but only apply to archive names starting with the hostname
of the machine followed by a "-" character:
$ borg prune -v --list --keep-daily=7 --keep-weekly=4 --prefix='{hostname}-' /path/to/repo

Keep 7 end of day, 4 additional end of week archives,
and an end of month archive for every month:
$ borg prune -v --list --keep-daily=7 --keep-weekly=4 --keep-monthly=-1 /path/to/repo

Keep all backups in the last 10 days, 4 additional end of week archives,
and an end of month archive for every month:
$ borg prune -v --list --keep-within=10d --keep-weekly=4 --keep-monthly=-1 /path/to/repo

borg info

usage: borg info [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH]
 ARCHIVE

Show archive details such as disk space used

positional arguments:
 ARCHIVE archive to display information about

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")

Description

This command displays some detailed information about the specified archive.

Please note that the deduplicated sizes of the individual archives do not add
up to the deduplicated size of the repository (“all archives”), because the two
are meaning different things:

	This archive / deduplicated size = amount of data stored ONLY for this archive

	= unique chunks of this archive.

	All archives / deduplicated size = amount of data stored in the repo

	= all chunks in the repository.

Examples

$ borg info /path/to/repo::root-2016-02-15
Name: root-2016-02-15
Fingerprint: 57c827621f21b000a8d363c1e163cc55983822b3afff3a96df595077a660be50
Hostname: myhostname
Username: root
Time (start): Mon, 2016-02-15 19:36:29
Time (end): Mon, 2016-02-15 19:39:26
Command line: /usr/local/bin/borg create -v --list -C zlib,6 /path/to/repo::root-2016-02-15 / --one-file-system
Number of files: 38100

 Original size Compressed size Deduplicated size
This archive: 1.33 GB 613.25 MB 571.64 MB
All archives: 1.63 GB 853.66 MB 584.12 MB

 Unique chunks Total chunks
Chunk index: 36858 48844

borg mount

usage: borg mount [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [-f] [-o OPTIONS]
 REPOSITORY_OR_ARCHIVE MOUNTPOINT

Mount archive or an entire repository as a FUSE fileystem

positional arguments:
 REPOSITORY_OR_ARCHIVE
 repository/archive to mount
 MOUNTPOINT where to mount filesystem

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 -f, --foreground stay in foreground, do not daemonize
 -o OPTIONS Extra mount options

Description

This command mounts an archive as a FUSE filesystem. This can be useful for
browsing an archive or restoring individual files. Unless the --foreground
option is given the command will run in the background until the filesystem
is umounted.

The BORG_MOUNT_DATA_CACHE_ENTRIES environment variable is meant for advanced users
to tweak the performance. It sets the number of cached data chunks; additional
memory usage can be up to ~8 MiB times this number. The default is the number
of CPU cores.

For mount options, see the fuse(8) manual page. Additional mount options
supported by borg:

	allow_damaged_files: by default damaged files (where missing chunks were
replaced with runs of zeros by borg check –repair) are not readable and
return EIO (I/O error). Set this option to read such files.

Examples

$ borg mount /path/to/repo::root-2016-02-15 /tmp/mymountpoint
$ ls /tmp/mymountpoint
bin boot etc home lib lib64 lost+found media mnt opt root sbin srv tmp usr var
$ fusermount -u /tmp/mymountpoint

borg key export

usage: borg key export [-h] [--critical] [--error] [--warning] [--info]
 [--debug] [--lock-wait N] [--show-rc]
 [--no-files-cache] [--umask M] [--remote-path PATH]
 [--paper]
 [REPOSITORY] [PATH]

Export the repository key for backup

positional arguments:
 REPOSITORY
 PATH where to store the backup

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 --paper Create an export suitable for printing and later type-
 in

Description

If repository encryption is used, the repository is inaccessible
without the key. This command allows to backup this essential key.

There are two backup formats. The normal backup format is suitable for
digital storage as a file. The --paper backup format is optimized
for printing and typing in while importing, with per line checks to
reduce problems with manual input.

For repositories using keyfile encryption the key is saved locally
on the system that is capable of doing backups. To guard against loss
of this key, the key needs to be backed up independently of the main
data backup.

For repositories using the repokey encryption the key is saved in the
repository in the config file. A backup is thus not strictly needed,
but guards against the repository becoming inaccessible if the file
is damaged for some reason.

borg key import

usage: borg key import [-h] [--critical] [--error] [--warning] [--info]
 [--debug] [--lock-wait N] [--show-rc]
 [--no-files-cache] [--umask M] [--remote-path PATH]
 [--paper]
 [REPOSITORY] [PATH]

Import the repository key from backup

positional arguments:
 REPOSITORY
 PATH path to the backup

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 --paper interactively import from a backup done with --paper

Description

This command allows to restore a key previously backed up with the
export command.

If the --paper option is given, the import will be an interactive
process in which each line is checked for plausibility before
proceeding to the next line. For this format PATH must not be given.

borg change-passphrase

usage: borg change-passphrase [-h] [--critical] [--error] [--warning] [--info]
 [--debug] [--lock-wait N] [--show-rc]
 [--no-files-cache] [--umask M]
 [--remote-path PATH]
 [REPOSITORY]

Change repository key file passphrase

positional arguments:
 REPOSITORY

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")

Description

The key files used for repository encryption are optionally passphrase
protected. This command can be used to change this passphrase.

Examples

Create a key file protected repository
$ borg init --encryption=keyfile -v /path/to/repo
Initializing repository at "/path/to/repo"
Enter new passphrase:
Enter same passphrase again:
Remember your passphrase. Your data will be inaccessible without it.
Key in "/root/.config/borg/keys/mnt_backup" created.
Keep this key safe. Your data will be inaccessible without it.
Synchronizing chunks cache...
Archives: 0, w/ cached Idx: 0, w/ outdated Idx: 0, w/o cached Idx: 0.
Done.

Change key file passphrase
$ borg change-passphrase -v /path/to/repo
Enter passphrase for key /root/.config/borg/keys/mnt_backup:
Enter new passphrase:
Enter same passphrase again:
Remember your passphrase. Your data will be inaccessible without it.
Key updated

borg serve

usage: borg serve [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [--restrict-to-path PATH]
 [--append-only]

Start in server mode. This command is usually not used manually.

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 --restrict-to-path PATH
 restrict repository access to PATH. Can be specified
 multiple times to allow the client access to several
 directories. Access to all sub-directories is granted
 implicitly; PATH doesn't need to directly point to a
 repository.
 --append-only only allow appending to repository segment files

Description

This command starts a repository server process. This command is usually not used manually.

Examples

borg serve has special support for ssh forced commands (see authorized_keys
example below): it will detect that you use such a forced command and extract
the value of the --restrict-to-path option(s).
It will then parse the original command that came from the client, makes sure
that it is also borg serve and enforce path restriction(s) as given by the
forced command. That way, other options given by the client (like --info or
--umask) are preserved (and are not fixed by the forced command).

Allow an SSH keypair to only run borg, and only have access to /path/to/repo.
Use key options to disable unneeded and potentially dangerous SSH functionality.
This will help to secure an automated remote backup system.
$ cat ~/.ssh/authorized_keys
command="borg serve --restrict-to-path /path/to/repo",no-pty,no-agent-forwarding,no-port-forwarding,no-X11-forwarding,no-user-rc ssh-rsa AAAAB3[...]

borg upgrade

usage: borg upgrade [-h] [--critical] [--error] [--warning] [--info] [--debug]
 [--lock-wait N] [--show-rc] [--no-files-cache] [--umask M]
 [--remote-path PATH] [-p] [-n] [-i]
 [REPOSITORY]

upgrade a repository from a previous version

positional arguments:
 REPOSITORY path to the repository to be upgraded

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")
 -p, --progress show progress display while upgrading the repository
 -n, --dry-run do not change repository
 -i, --inplace rewrite repository in place, with no chance of going
 back to older versions of the repository.

Description

Upgrade an existing Borg repository.
This currently supports converting an Attic repository to Borg and also
helps with converting Borg 0.xx to 1.0.

Currently, only LOCAL repositories can be upgraded (issue #465).

It will change the magic strings in the repository’s segments
to match the new Borg magic strings. The keyfiles found in
$ATTIC_KEYS_DIR or ~/.attic/keys/ will also be converted and
copied to $BORG_KEYS_DIR or ~/.config/borg/keys.

The cache files are converted, from $ATTIC_CACHE_DIR or
~/.cache/attic to $BORG_CACHE_DIR or ~/.cache/borg, but the
cache layout between Borg and Attic changed, so it is possible
the first backup after the conversion takes longer than expected
due to the cache resync.

Upgrade should be able to resume if interrupted, although it
will still iterate over all segments. If you want to start
from scratch, use borg delete over the copied repository to
make sure the cache files are also removed:

borg delete borg

Unless --inplace is specified, the upgrade process first
creates a backup copy of the repository, in
REPOSITORY.upgrade-DATETIME, using hardlinks. This takes
longer than in place upgrades, but is much safer and gives
progress information (as opposed to cp -al). Once you are
satisfied with the conversion, you can safely destroy the
backup copy.

WARNING: Running the upgrade in place will make the current
copy unusable with older version, with no way of going back
to previous versions. This can PERMANENTLY DAMAGE YOUR
REPOSITORY! Attic CAN NOT READ BORG REPOSITORIES, as the
magic strings have changed. You have been warned.

Examples

Upgrade the borg repository to the most recent version.
$ borg upgrade -v /path/to/repo
making a hardlink copy in /path/to/repo.upgrade-2016-02-15-20:51:55
opening attic repository with borg and converting
no key file found for repository
converting repo index /path/to/repo/index.0
converting 1 segments...
converting borg 0.xx to borg current
no key file found for repository

borg break-lock

usage: borg break-lock [-h] [--critical] [--error] [--warning] [--info]
 [--debug] [--lock-wait N] [--show-rc]
 [--no-files-cache] [--umask M] [--remote-path PATH]
 [REPOSITORY]

Break the repository lock (e.g. in case it was left by a dead borg.

positional arguments:
 REPOSITORY repository for which to break the locks

optional arguments:
 -h, --help show this help message and exit
 --critical work on log level CRITICAL
 --error work on log level ERROR
 --warning work on log level WARNING (default)
 --info, -v, --verbose
 work on log level INFO
 --debug work on log level DEBUG
 --lock-wait N wait for the lock, but max. N seconds (default: 1).
 --show-rc show/log the return code (rc)
 --no-files-cache do not load/update the file metadata cache used to
 detect unchanged files
 --umask M set umask to M (local and remote, default: 0077)
 --remote-path PATH set remote path to executable (default: "borg")

Description

This command breaks the repository and cache locks.
Please use carefully and only while no borg process (on any machine) is
trying to access the Cache or the Repository.

Miscellaneous Help

borg help patterns

Exclusion patterns support four separate styles, fnmatch, shell, regular
expressions and path prefixes. By default, fnmatch is used. If followed
by a colon (‘:’) the first two characters of a pattern are used as a
style selector. Explicit style selection is necessary when a
non-default style is desired or when the desired pattern starts with
two alphanumeric characters followed by a colon (i.e. aa:something/*).

Fnmatch [https://docs.python.org/3/library/fnmatch.html], selector fm:

This is the default style. These patterns use a variant of shell
pattern syntax, with ‘*’ matching any number of characters, ‘?’
matching any single character, ‘[...]’ matching any single
character specified, including ranges, and ‘[!...]’ matching any
character not specified. For the purpose of these patterns, the
path separator (‘’ for Windows and ‘/’ on other systems) is not
treated specially. Wrap meta-characters in brackets for a literal
match (i.e. [?] to match the literal character ?). For a path
to match a pattern, it must completely match from start to end, or
must match from the start to just before a path separator. Except
for the root path, paths will never end in the path separator when
matching is attempted. Thus, if a given pattern ends in a path
separator, a ‘*’ is appended before matching is attempted.

Shell-style patterns, selector sh:

Like fnmatch patterns these are similar to shell patterns. The difference
is that the pattern may include **/ for matching zero or more directory
levels, * for matching zero or more arbitrary characters with the
exception of any path separator.

Regular expressions, selector re:

Regular expressions similar to those found in Perl are supported. Unlike
shell patterns regular expressions are not required to match the complete
path and any substring match is sufficient. It is strongly recommended to
anchor patterns to the start (‘^’), to the end (‘$’) or both. Path
separators (‘’ for Windows and ‘/’ on other systems) in paths are
always normalized to a forward slash (‘/’) before applying a pattern. The
regular expression syntax is described in the Python documentation for
the re module [https://docs.python.org/3/library/re.html].

Prefix path, selector pp:

This pattern style is useful to match whole sub-directories. The pattern
pp:/data/bar matches /data/bar and everything therein.

Exclusions can be passed via the command line option –exclude. When used
from within a shell the patterns should be quoted to protect them from
expansion.

The –exclude-from option permits loading exclusion patterns from a text
file with one pattern per line. Lines empty or starting with the number sign
(‘#’) after removing whitespace on both ends are ignored. The optional style
selector prefix is also supported for patterns loaded from a file. Due to
whitespace removal paths with whitespace at the beginning or end can only be
excluded using regular expressions.

Examples:

Exclude '/home/user/file.o' but not '/home/user/file.odt':
$ borg create -e '*.o' backup /

Exclude '/home/user/junk' and '/home/user/subdir/junk' but
not '/home/user/importantjunk' or '/etc/junk':
$ borg create -e '/home/*/junk' backup /

Exclude the contents of '/home/user/cache' but not the directory itself:
$ borg create -e /home/user/cache/ backup /

The file '/home/user/cache/important' is *not* backed up:
$ borg create -e /home/user/cache/ backup / /home/user/cache/important

The contents of directories in '/home' are not backed up when their name
ends in '.tmp'
$ borg create --exclude 're:^/home/[^/]+\.tmp/' backup /

Load exclusions from file
$ cat >exclude.txt <<EOF
Comment line
/home/*/junk
*.tmp
fm:aa:something/*
re:^/home/[^/]\.tmp/
sh:/home/*/.thumbnails
EOF
$ borg create --exclude-from exclude.txt backup /

borg help placeholders

Repository (or Archive) URLs, –prefix and –remote-path values support these
placeholders:

{hostname}

The (short) hostname of the machine.

{fqdn}

The full name of the machine.

{now}

The current local date and time.

{utcnow}

The current UTC date and time.

{user}

The user name (or UID, if no name is available) of the user running borg.

{pid}

The current process ID.

{borgversion}

The version of borg, e.g.: 1.0.8rc1

{borgmajor}

The version of borg, only the major version, e.g.: 1

{borgminor}

The version of borg, only major and minor version, e.g.: 1.0

{borgpatch}

The version of borg, only major, minor and patch version, e.g.: 1.0.8

Examples:

borg create /path/to/repo::{hostname}-{user}-{utcnow} ...
borg create /path/to/repo::{hostname}-{now:%Y-%m-%d_%H:%M:%S} ...
borg prune --prefix '{hostname}-' ...

Debug Commands

There are some more commands (all starting with “debug-”) which are all
not intended for normal use and potentially very dangerous if used incorrectly.

For example, borg debug-put-obj and borg debug-delete-obj will only do
what their name suggests: put objects into repo / delete objects from repo.

Please note:

	they will not update the chunks cache (chunks index) about the object

	they will not update the manifest (so no automatic chunks index resync is triggered)

	they will not check whether the object is in use (e.g. before delete-obj)

	they will not update any metadata which may point to the object

They exist to improve debugging capabilities without direct system access, e.g.
in case you ever run into some severe malfunction. Use them only if you know
what you are doing or if a trusted Borg developer tells you what to do.

Additional Notes

Here are misc. notes about topics that are maybe not covered in enough detail in the usage section.

Item flags

borg create -v --list outputs a verbose list of all files, directories and other
file system items it considered (no matter whether they had content changes
or not). For each item, it prefixes a single-letter flag that indicates type
and/or status of the item.

If you are interested only in a subset of that output, you can give e.g.
--filter=AME and it will only show regular files with A, M or E status (see
below).

A uppercase character represents the status of a regular file relative to the
“files” cache (not relative to the repo – this is an issue if the files cache
is not used). Metadata is stored in any case and for ‘A’ and ‘M’ also new data
chunks are stored. For ‘U’ all data chunks refer to already existing chunks.

	‘A’ = regular file, added (see also I am seeing ‘A’ (added) status for a unchanged file!? in the FAQ)

	‘M’ = regular file, modified

	‘U’ = regular file, unchanged

	‘E’ = regular file, an error happened while accessing/reading this file

A lowercase character means a file type other than a regular file,
borg usually just stores their metadata:

	‘d’ = directory

	‘b’ = block device

	‘c’ = char device

	‘h’ = regular file, hardlink (to already seen inodes)

	‘s’ = symlink

	‘f’ = fifo

Other flags used include:

	‘i’ = backup data was read from standard input (stdin)

	‘-‘ = dry run, item was not backed up

	‘?’ = missing status code (if you see this, please file a bug report!)

–chunker-params

The chunker params influence how input files are cut into pieces (chunks)
which are then considered for deduplication. They also have a big impact on
resource usage (RAM and disk space) as the amount of resources needed is
(also) determined by the total amount of chunks in the repository (see
Indexes / Caches memory usage for details).

--chunker-params=10,23,16,4095 results in a fine-grained deduplication
and creates a big amount of chunks and thus uses a lot of resources to manage
them. This is good for relatively small data volumes and if the machine has a
good amount of free RAM and disk space.

--chunker-params=19,23,21,4095 (default) results in a coarse-grained
deduplication and creates a much smaller amount of chunks and thus uses less
resources. This is good for relatively big data volumes and if the machine has
a relatively low amount of free RAM and disk space.

If you already have made some archives in a repository and you then change
chunker params, this of course impacts deduplication as the chunks will be
cut differently.

In the worst case (all files are big and were touched in between backups), this
will store all content into the repository again.

Usually, it is not that bad though:

	usually most files are not touched, so it will just re-use the old chunks
it already has in the repo

	files smaller than the (both old and new) minimum chunksize result in only
one chunk anyway, so the resulting chunks are same and deduplication will apply

If you switch chunker params to save resources for an existing repo that
already has some backup archives, you will see an increasing effect over time,
when more and more files have been touched and stored again using the bigger
chunksize and all references to the smaller older chunks have been removed
(by deleting / pruning archives).

If you want to see an immediate big effect on resource usage, you better start
a new repository when changing chunker params.

For more details, see Chunks.

–read-special

The –read-special option is special - you do not want to use it for normal
full-filesystem backups, but rather after carefully picking some targets for it.

The option --read-special triggers special treatment for block and char
device files as well as FIFOs. Instead of storing them as such a device (or
FIFO), they will get opened, their content will be read and in the backup
archive they will show up like a regular file.

Symlinks will also get special treatment if (and only if) they point to such
a special file: instead of storing them as a symlink, the target special file
will get processed as described above.

One intended use case of this is backing up the contents of one or multiple
block devices, like e.g. LVM snapshots or inactive LVs or disk partitions.

You need to be careful about what you include when using --read-special,
e.g. if you include /dev/zero, your backup will never terminate.

Restoring such files’ content is currently only supported one at a time via
--stdout option (and you have to redirect stdout to where ever it shall go,
maybe directly into an existing device file of your choice or indirectly via
dd).

To some extent, mounting a backup archive with the backups of special files
via borg mount and then loop-mounting the image files from inside the mount
point will work. If you plan to access a lot of data in there, it likely will
scale and perform better if you do not work via the FUSE mount.

Example

Imagine you have made some snapshots of logical volumes (LVs) you want to backup.

Note

For some scenarios, this is a good method to get “crash-like” consistency
(I call it crash-like because it is the same as you would get if you just
hit the reset button or your machine would abrubtly and completely crash).
This is better than no consistency at all and a good method for some use
cases, but likely not good enough if you have databases running.

Then you create a backup archive of all these snapshots. The backup process will
see a “frozen” state of the logical volumes, while the processes working in the
original volumes continue changing the data stored there.

You also add the output of lvdisplay to your backup, so you can see the LV
sizes in case you ever need to recreate and restore them.

After the backup has completed, you remove the snapshots again.

$ # create snapshots here
$ lvdisplay > lvdisplay.txt
$ borg create --read-special /path/to/repo::arch lvdisplay.txt /dev/vg0/*-snapshot
$ # remove snapshots here

Now, let’s see how to restore some LVs from such a backup.

$ borg extract /path/to/repo::arch lvdisplay.txt
$ # create empty LVs with correct sizes here (look into lvdisplay.txt).
$ # we assume that you created an empty root and home LV and overwrite it now:
$ borg extract --stdout /path/to/repo::arch dev/vg0/root-snapshot > /dev/vg0/root
$ borg extract --stdout /path/to/repo::arch dev/vg0/home-snapshot > /dev/vg0/home

Append-only mode

A repository can be made “append-only”, which means that Borg will never overwrite or
delete committed data. This is useful for scenarios where multiple machines back up to
a central backup server using borg serve, since a hacked machine cannot delete
backups permanently.

To activate append-only mode, edit the repository config file and add a line
append_only=1 to the [repository] section (or edit the line if it exists).

In append-only mode Borg will create a transaction log in the transactions file,
where each line is a transaction and a UTC timestamp.

In addition, borg serve can act as if a repository is in append-only mode with
its option --append-only. This can be very useful for fine-tuning access control
in .ssh/authorized_keys

command="borg serve --append-only ..." ssh-rsa <key used for not-always-trustable backup clients>
command="borg serve ..." ssh-rsa <key used for backup management>

Example

Suppose an attacker remotely deleted all backups, but your repository was in append-only
mode. A transaction log in this situation might look like this:

transaction 1, UTC time 2016-03-31T15:53:27.383532
transaction 5, UTC time 2016-03-31T15:53:52.588922
transaction 11, UTC time 2016-03-31T15:54:23.887256
transaction 12, UTC time 2016-03-31T15:55:54.022540
transaction 13, UTC time 2016-03-31T15:55:55.472564

From your security logs you conclude the attacker gained access at 15:54:00 and all
the backups where deleted or replaced by compromised backups. From the log you know
that transactions 11 and later are compromised. Note that the transaction ID is the
name of the last file in the transaction. For example, transaction 11 spans files 6
to 11.

In a real attack you’ll likely want to keep the compromised repository
intact to analyze what the attacker tried to achieve. It’s also a good idea to make this
copy just in case something goes wrong during the recovery. Since recovery is done by
deleting some files, a hard link copy (cp -al) is sufficient.

The first step to reset the repository to transaction 5, the last uncompromised transaction,
is to remove the hints.N and index.N files in the repository (these two files are
always expendable). In this example N is 13.

Then remove or move all segment files from the segment directories in data/ starting
with file 6:

rm data/**/{6..13}

That’s all to it.

Drawbacks

As data is only appended, and nothing removed, commands like prune or delete
won’t free disk space, they merely tag data as deleted in a new transaction.

Be aware that as soon as you write to the repo in non-append-only mode (e.g. prune,
delete or create archives from an admin machine), it will remove the deleted objects
permanently (including the ones that were already marked as deleted, but not removed,
in append-only mode).

Note that you can go back-and-forth between normal and append-only operation by editing
the configuration file, it’s not a “one way trip”.

Further considerations

Append-only mode is not respected by tools other than Borg. rm still works on the
repository. Make sure that backup client machines only get to access the repository via
borg serve.

Ensure that no remote access is possible if the repository is temporarily set to normal mode
for e.g. regular pruning.

Further protections can be implemented, but are outside of Borgs scope. For example,
file system snapshots or wrapping borg serve to set special permissions or ACLs on
new data files.

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Deployment

This chapter will give an example how to setup a borg repository server for multiple
clients.

Machines

There are multiple machines used in this chapter and will further be named by their
respective fully qualified domain name (fqdn).

	The backup server: backup01.srv.local

	The clients:
	John Doe’s desktop: johndoe.clnt.local

	Webserver 01: web01.srv.local

	Application server 01: app01.srv.local

User and group

The repository server needs to have only one UNIX user for all the clients.
Recommended user and group with additional settings:

	User: backup

	Group: backup

	Shell: /bin/bash (or other capable to run the borg serve command)

	Home: /home/backup

Most clients shall initiate a backup from the root user to catch all
users, groups and permissions (e.g. when backing up /home).

Folders

The following folder tree layout is suggested on the repository server:

	User home directory, /home/backup

	Repositories path (storage pool): /home/backup/repos

	Clients restricted paths (/home/backup/repos/<client fqdn>):
	johndoe.clnt.local: /home/backup/repos/johndoe.clnt.local

	web01.srv.local: /home/backup/repos/web01.srv.local

	app01.srv.local: /home/backup/repos/app01.srv.local

Restrictions

Borg is instructed to restrict clients into their own paths:
borg serve --restrict-to-path /home/backup/repos/<client fqdn>

The client will be able to access any file or subdirectory inside of /home/backup/repos/<client fqdn>
but no other directories. You can allow a client to access several separate directories by passing multiple
–restrict-to-path flags, for instance: borg serve --restrict-to-path /home/backup/repos/<client fqdn> --restrict-to-path /home/backup/repos/<other client fqdn>,
which could make sense if multiple machines belong to one person which should then have access to all the
backups of their machines.

There is only one ssh key per client allowed. Keys are added for johndoe.clnt.local, web01.srv.local and
app01.srv.local. But they will access the backup under only one UNIX user account as:
backup@backup01.srv.local. Every key in $HOME/.ssh/authorized_keys has a
forced command and restrictions applied as shown below:

command="cd /home/backup/repos/<client fqdn>;
 borg serve --restrict-to-path /home/backup/repos/<client fqdn>",
 no-port-forwarding,no-X11-forwarding,no-pty,
 no-agent-forwarding,no-user-rc <keytype> <key> <host>

Note

The text shown above needs to be written on a single line!

The options which are added to the key will perform the following:

	Change working directory

	Run borg serve restricted to the client base path

	Restrict ssh and do not allow stuff which imposes a security risk

Due to the cd command we use, the server automatically changes the current
working directory. Then client doesn’t need to have knowledge of the absolute
or relative remote repository path and can directly access the repositories at
<user>@<host>:<repo>.

Note

The setup above ignores all client given commandline parameters
which are normally appended to the borg serve command.

Client

The client needs to initialize the pictures repository like this:

borg init backup@backup01.srv.local:pictures

Or with the full path (should actually never be used, as only for demonstrational purposes).
The server should automatically change the current working directory to the <client fqdn> folder.

borg init backup@backup01.srv.local:/home/backup/repos/johndoe.clnt.local/pictures

When johndoe.clnt.local tries to access a not restricted path the following error is raised.
John Doe tries to backup into the Web 01 path:

borg init backup@backup01.srv.local:/home/backup/repos/web01.srv.local/pictures


~~~ SNIP ~~~
Remote: borg.remote.PathNotAllowed: /home/backup/repos/web01.srv.local/pictures
~~~ SNIP ~~~
Repository path not allowed

Ansible

Ansible takes care of all the system-specific commands to add the user, create the
folder. Even when the configuration is changed the repository server configuration is
satisfied and reproducible.

Automate setting up an repository server with the user, group, folders and
permissions a Ansible playbook could be used. Keep in mind the playbook
uses the Arch Linux pacman [https://www.archlinux.org/pacman/pacman.8.html]
package manager to install and keep borg up-to-date.

- hosts: backup01.srv.local
 vars:
 user: backup
 group: backup
 home: /home/backup
 pool: "{{ home }}/repos"
 auth_users:
 - host: johndoe.clnt.local
 key: "{{ lookup('file', '/path/to/keys/johndoe.clnt.local.pub') }}"
 - host: web01.clnt.local
 key: "{{ lookup('file', '/path/to/keys/web01.clnt.local.pub') }}"
 - host: app01.clnt.local
 key: "{{ lookup('file', '/path/to/keys/app01.clnt.local.pub') }}"
 tasks:
 - pacman: name=borg state=latest update_cache=yes
 - group: name="{{ group }}" state=present
 - user: name="{{ user }}" shell=/bin/bash home="{{ home }}" createhome=yes group="{{ group }}" groups= state=present
 - file: path="{{ home }}" owner="{{ user }}" group="{{ group }}" mode=0700 state=directory
 - file: path="{{ home }}/.ssh" owner="{{ user }}" group="{{ group }}" mode=0700 state=directory
 - file: path="{{ pool }}" owner="{{ user }}" group="{{ group }}" mode=0700 state=directory
 - authorized_key: user="{{ user }}"
 key="{{ item.key }}"
 key_options='command="cd {{ pool }}/{{ item.host }};borg serve --restrict-to-path {{ pool }}/{{ item.host }}",no-port-forwarding,no-X11-forwarding,no-pty,no-agent-forwarding,no-user-rc'
 with_items: "{{ auth_users }}"
 - file: path="{{ home }}/.ssh/authorized_keys" owner="{{ user }}" group="{{ group }}" mode=0600 state=file
 - file: path="{{ pool }}/{{ item.host }}" owner="{{ user }}" group="{{ group }}" mode=0700 state=directory
 with_items: "{{ auth_users }}"

Enhancements

As this chapter only describes a simple and effective setup it could be further
enhanced when supporting (a limited set) of client supplied commands. A wrapper
for starting borg serve could be written. Or borg itself could be enhanced to
autodetect it runs under SSH by checking the SSH_ORIGINAL_COMMAND environment
variable. This is left open for future improvements.

When extending ssh autodetection in borg no external wrapper script is necessary
and no other interpreter or application has to be deployed.

See also

	SSH Daemon manpage [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man8/sshd.8]

	Ansible [https://docs.ansible.com]

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Frequently asked questions

Can I backup VM disk images?

Yes, the deduplication [https://en.wikipedia.org/wiki/Data_deduplication] technique used by
Borg makes sure only the modified parts of the file are stored.
Also, we have optional simple sparse file support for extract.

If you use non-snapshotting backup tools like Borg to back up virtual machines,
then these should be turned off for doing so. Backing up live VMs this way can (and will)
result in corrupted or inconsistent backup contents: a VM image is just a regular file to
Borg with the same issues as regular files when it comes to concurrent reading and writing from
the same file.

For backing up live VMs use file system snapshots on the VM host, which establishes
crash-consistency for the VM images. This means that with most file systems
(that are journaling) the FS will always be fine in the backup (but may need a
journal replay to become accessible).

Usually this does not mean that file contents on the VM are consistent, since file
contents are normally not journaled. Notable exceptions are ext4 in data=journal mode,
ZFS and btrfs (unless nodatacow is used).

Applications designed with crash-consistency in mind (most relational databases
like PostgreSQL, SQLite etc. but also for example Borg repositories) should always
be able to recover to a consistent state from a backup created with
crash-consistent snapshots (even on ext4 with data=writeback or XFS).

Hypervisor snapshots capturing most of the VM’s state can also be used for backups
and can be a better alternative to pure file system based snapshots of the VM’s disk,
since no state is lost. Depending on the application this can be the easiest and most
reliable way to create application-consistent backups.

Other applications may require a lot of work to reach application-consistency:
It’s a broad and complex issue that cannot be explained in entirety here.

Borg doesn’t intend to address these issues due to their huge complexity
and platform/software dependency. Combining Borg with the mechanisms provided
by the platform (snapshots, hypervisor features) will be the best approach
to start tackling them.

Can I backup from multiple servers into a single repository?

Yes, but in order for the deduplication used by Borg to work, it
needs to keep a local cache containing checksums of all file
chunks already stored in the repository. This cache is stored in
~/.cache/borg/. If Borg detects that a repository has been
modified since the local cache was updated it will need to rebuild
the cache. This rebuild can be quite time consuming.

So, yes it’s possible. But it will be most efficient if a single
repository is only modified from one place. Also keep in mind that
Borg will keep an exclusive lock on the repository while creating
or deleting archives, which may make simultaneous backups fail.

Can I copy or synchronize my repo to another location?

Yes, you could just copy all the files. Make sure you do that while no
backup is running. So what you get here is this:

	client machine —borg create—> repo1

	repo1 —copy—> repo2

There is no special borg command to do the copying, just use cp or rsync if
you want to do that.

But think about whether that is really what you want. If something goes
wrong in repo1, you will have the same issue in repo2 after the copy.

If you want to have 2 independent backups, it is better to do it like this:

	client machine —borg create—> repo1

	client machine —borg create—> repo2

Which file types, attributes, etc. are not preserved?

	UNIX domain sockets (because it does not make sense - they are
meaningless without the running process that created them and the process
needs to recreate them in any case). So, don’t panic if your backup
misses a UDS!

	The precise on-disk (or rather: not-on-disk) representation of the holes
in a sparse file.
Archive creation has no special support for sparse files, holes are
backed up as (deduplicated and compressed) runs of zero bytes.
Archive extraction has optional support to extract all-zero chunks as
holes in a sparse file.

	filesystem specific attributes, like ext4 immutable bit, see #618 [https://github.com/borgbackup/borg/issues/618].

Are there other known limitations?

	A single archive can only reference a limited volume of file/dir metadata,
usually corresponding to tens or hundreds of millions of files/dirs.
When trying to go beyond that limit, you will get a fatal IntegrityError
exception telling that the (archive) object is too big.
An easy workaround is to create multiple archives with less items each.
See also the Note about archive limitations and #1452 [https://github.com/borgbackup/borg/issues/1452].

Why is my backup bigger than with attic? Why doesn’t Borg do compression by default?

Attic was rather unflexible when it comes to compression, it always
compressed using zlib level 6 (no way to switch compression off or
adjust the level or algorithm).

Borg offers a lot of different compression algorithms and
levels. Which of them is the best for you pretty much depends on your
use case, your data, your hardware – so you need to do an informed
decision about whether you want to use compression, which algorithm
and which level you want to use. This is why compression defaults to
none.

How can I specify the encryption passphrase programmatically?

The encryption passphrase can be specified programmatically using the
BORG_PASSPHRASE environment variable. This is convenient when setting up
automated encrypted backups. Another option is to use
key file based encryption with a blank passphrase. See
Repository encryption for more details.

Note

Be careful how you set the environment; using the env
command, a system() call or using inline shell scripts
might expose the credentials in the process list directly
and they will be readable to all users on a system. Using
export in a shell script file should be safe, however, as
the environment of a process is accessible only to that
user [https://security.stackexchange.com/questions/14000/environment-variable-accessibility-in-linux/14009#14009].

When backing up to remote encrypted repos, is encryption done locally?

Yes, file and directory metadata and data is locally encrypted, before
leaving the local machine. We do not mean the transport layer encryption
by that, but the data/metadata itself. Transport layer encryption (e.g.
when ssh is used as a transport) applies additionally.

When backing up to remote servers, do I have to trust the remote server?

Yes and No.

No, as far as data confidentiality is concerned - if you use encryption,
all your files/dirs data and metadata are stored in their encrypted form
into the repository.

Yes, as an attacker with access to the remote server could delete (or
otherwise make unavailable) all your backups.

How can I protect against a hacked backup client?

Assume you backup your backup client machine C to the backup server S and
C gets hacked. In a simple push setup, the attacker could then use borg on
C to delete all backups residing on S.

These are your options to protect against that:

	Do not allow to permanently delete data from the repo, see Append-only mode.

	Use a pull-mode setup using ssh -R, see #900 [https://github.com/borgbackup/borg/issues/900].

	Mount C’s filesystem on another machine and then create a backup of it.

	Do not give C filesystem-level access to S.

How can I protect against a hacked backup server?

Just in case you got the impression that pull-mode backups are way more safe
than push-mode, you also need to consider the case that your backup server S
gets hacked. In case S has access to a lot of clients C, that might bring you
into even bigger trouble than a hacked backup client in the previous FAQ entry.

These are your options to protect against that:

	Use the standard push-mode setup (see also previous FAQ entry).

	Mount (the repo part of) S’s filesystem on C.

	Do not give S file-system level access to C.

	Have your backup server at a well protected place (maybe not reachable from
the internet), configure it safely, apply security updates, monitor it, ...

How can I protect against theft, sabotage, lightning, fire, ...?

In general: if your only backup medium is nearby the backupped machine and
always connected, you can easily get into trouble: they likely share the same
fate if something goes really wrong.

Thus:

	have multiple backup media

	have media disconnected from network, power, computer

	have media at another place

	have a relatively recent backup on your media

Why do I get “connection closed by remote” after a while?

When doing a backup to a remote server (using a ssh: repo URL), it sometimes
stops after a while (some minutes, hours, ... - not immediately) with
“connection closed by remote” error message. Why?

That’s a good question and we are trying to find a good answer in #636 [https://github.com/borgbackup/borg/issues/636].

Why am I seeing idle borg serve processes on the repo server?

Maybe the ssh connection between client and server broke down and that was not
yet noticed on the server. Try these settings:

/etc/ssh/sshd_config on borg repo server - kill connection to client
after ClientAliveCountMax * ClientAliveInterval seconds with no response
ClientAliveInterval 20
ClientAliveCountMax 3

If you have multiple borg create ... ; borg create ... commands in a already
serialized way in a single script, you need to give them –lock-wait N (with N
being a bit more than the time the server needs to terminate broken down
connections and release the lock).

The borg cache eats way too much disk space, what can I do?

There is a temporary (but maybe long lived) hack to avoid using lots of disk
space for chunks.archive.d (see #235 [https://github.com/borgbackup/borg/issues/235] for details):

this assumes you are working with the same user as the backup.
you can get the REPOID from the "config" file inside the repository.
cd ~/.cache/borg/<REPOID>
rm -rf chunks.archive.d ; touch chunks.archive.d

This deletes all the cached archive chunk indexes and replaces the directory
that kept them with a file, so borg won’t be able to store anything “in” there
in future.

This has some pros and cons, though:

	much less disk space needs for ~/.cache/borg.

	chunk cache resyncs will be slower as it will have to transfer chunk usage
metadata for all archives from the repository (which might be slow if your
repo connection is slow) and it will also have to build the hashtables from
that data.
chunk cache resyncs happen e.g. if your repo was written to by another
machine (if you share same backup repo between multiple machines) or if
your local chunks cache was lost somehow.

The long term plan to improve this is called “borgception”, see #474 [https://github.com/borgbackup/borg/issues/474].

If a backup stops mid-way, does the already-backed-up data stay there?

Yes, Borg supports resuming backups.

During a backup a special checkpoint archive named <archive-name>.checkpoint
is saved every checkpoint interval (the default value for this is 5
minutes) containing all the data backed-up until that point.

Checkpoints only happen between files (so they don’t help for interruptions
happening while a very large file is being processed).

This checkpoint archive is a valid archive (all files in it are valid and complete),
but it is only a partial backup (not all files that you wanted to backup are
contained in it). Having it in the repo until a successful, full backup is
completed is useful because it references all the transmitted chunks up
to the checkpoint. This means that in case of an interruption, you only need to
retransfer the data since the last checkpoint.

If a backup was interrupted, you do not need to do any special considerations,
just invoke borg create as you always do. You may use the same archive name
as in previous attempt or a different one (e.g. if you always include the current
datetime), it does not matter.

Borg always does full single-pass backups, so it will start again
from the beginning - but it will be much faster, because some of the data was
already stored into the repo (and is still referenced by the checkpoint
archive), so it does not need to get transmitted and stored again.

Once your backup has finished successfully, you can delete all
<archive-name>.checkpoint archives.

How can I backup huge file(s) over a unstable connection?

You can use this “split trick” as a workaround for the in-between-files-only
checkpoints (see above), huge files and a instable connection to the repository:

Split the huge file(s) into parts of manageable size (e.g. 100MB) and create
a temporary archive of them. Borg will create checkpoints now more frequently
than if you try to backup the files in their original form (e.g. 100GB).

After that, you can remove the parts again and backup the huge file(s) in
their original form. This will now work a lot faster as a lot of content chunks
are already in the repository.

After you have successfully backed up the huge original file(s), you can remove
the temporary archive you made from the parts.

We realize that this is just a better-than-nothing workaround, see #1198 [https://github.com/borgbackup/borg/issues/1198]
for a potential solution.

Please note that this workaround only helps you for backup, not for restore.

If it crashes with a UnicodeError, what can I do?

Check if your encoding is set correctly. For most POSIX-like systems, try:

export LANG=en_US.UTF-8 # or similar, important is correct charset

I can’t extract non-ascii filenames by giving them on the commandline!?

This might be due to different ways to represent some characters in unicode
or due to other non-ascii encoding issues.

If you run into that, try this:

	avoid the non-ascii characters on the commandline by e.g. extracting
the parent directory (or even everything)

	mount the repo using FUSE and use some file manager

Can Borg add redundancy to the backup data to deal with hardware malfunction?

No, it can’t. While that at first sounds like a good idea to defend against
some defect HDD sectors or SSD flash blocks, dealing with this in a
reliable way needs a lot of low-level storage layout information and
control which we do not have (and also can’t get, even if we wanted).

So, if you need that, consider RAID or a filesystem that offers redundant
storage or just make backups to different locations / different hardware.

See also #225 [https://github.com/borgbackup/borg/issues/225].

Can Borg verify data integrity of a backup archive?

Yes, if you want to detect accidental data damage (like bit rot), use the
check operation. It will notice corruption using CRCs and hashes.
If you want to be able to detect malicious tampering also, use an encrypted
repo. It will then be able to check using CRCs and HMACs.

I am seeing ‘A’ (added) status for a unchanged file!?

The files cache is used to determine whether Borg already
“knows” / has backed up a file and if so, to skip the file from
chunking. It does intentionally not contain files that have a modification
time (mtime) same as the newest mtime in the created archive.

So, if you see an ‘A’ status for unchanged file(s), they are likely the files
with the most recent mtime in that archive.

This is expected: it is to avoid data loss with files that are backed up from
a snapshot and that are immediately changed after the snapshot (but within
mtime granularity time, so the mtime would not change). Without the code that
removes these files from the files cache, the change that happened right after
the snapshot would not be contained in the next backup as Borg would
think the file is unchanged.

This does not affect deduplication, the file will be chunked, but as the chunks
will often be the same and already stored in the repo (except in the above
mentioned rare condition), it will just re-use them as usual and not store new
data chunks.

If you want to avoid unnecessary chunking, just create or touch a small or
empty file in your backup source file set (so that one has the latest mtime,
not your 50GB VM disk image) and, if you do snapshots, do the snapshot after
that.

Since only the files cache is used in the display of files status,
those files are reported as being added when, really, chunks are
already used.

It always chunks all my files, even unchanged ones!

Borg maintains a files cache where it remembers the mtime, size and
inode of files. When Borg does a new backup and starts processing a
file, it first looks whether the file has changed (compared to the values
stored in the files cache). If the values are the same, the file is assumed
unchanged and thus its contents won’t get chunked (again).

Borg can’t keep an infinite history of files of course, thus entries
in the files cache have a “maximum time to live” which is set via the
environment variable BORG_FILES_CACHE_TTL (and defaults to 20).
Every time you do a backup (on the same machine, using the same user), the
cache entries’ ttl values of files that were not “seen” are incremented by 1
and if they reach BORG_FILES_CACHE_TTL, the entry is removed from the cache.

So, for example, if you do daily backups of 26 different data sets A, B,
C, ..., Z on one machine (using the default TTL), the files from A will be
already forgotten when you repeat the same backups on the next day and it
will be slow because it would chunk all the files each time. If you set
BORG_FILES_CACHE_TTL to at least 26 (or maybe even a small multiple of that),
it would be much faster.

Another possible reason is that files don’t always have the same path, for
example if you mount a filesystem without stable mount points for each backup.
If the directory where you mount a filesystem is different every time,
Borg assume they are different files.

Is there a way to limit bandwidth with Borg?

There is no command line option to limit bandwidth with Borg, but
bandwidth limiting can be accomplished with pipeviewer [http://www.ivarch.com/programs/pv.shtml]:

Create a wrapper script: /usr/local/bin/pv-wrapper

#!/bin/bash
 ## -q, --quiet do not output any transfer information at all
 ## -L, --rate-limit RATE limit transfer to RATE bytes per second
export RATE=307200
pv -q -L $RATE | "$@"

Add BORG_RSH environment variable to use pipeviewer wrapper script with ssh.

export BORG_RSH='/usr/local/bin/pv-wrapper ssh'

Now Borg will be bandwidth limited. Nice thing about pv is that you can change rate-limit on the fly:

pv -R $(pidof pv) -L 102400

I am having troubles with some network/FUSE/special filesystem, why?

Borg is doing nothing special in the filesystem, it only uses very
common and compatible operations (even the locking is just “mkdir”).

So, if you are encountering issues like slowness, corruption or malfunction
when using a specific filesystem, please try if you can reproduce the issues
with a local (non-network) and proven filesystem (like ext4 on Linux).

If you can’t reproduce the issue then, you maybe have found an issue within
the filesystem code you used (not with Borg). For this case, it is
recommended that you talk to the developers / support of the network fs and
maybe open an issue in their issue tracker. Do not file an issue in the
Borg issue tracker.

If you can reproduce the issue with the proven filesystem, please file an
issue in the Borg issue tracker about that.

Requirements for the borg single-file binary, esp. (g)libc?

We try to build the binary on old, but still supported systems - to keep the
minimum requirement for the (g)libc low. The (g)libc can’t be bundled into
the binary as it needs to fit your kernel and OS, but Python and all other
required libraries will be bundled into the binary.

If your system fulfills the minimum (g)libc requirement (see the README that
is released with the binary), there should be no problem. If you are slightly
below the required version, maybe just try. Due to the dynamic loading (or not
loading) of some shared libraries, it might still work depending on what
libraries are actually loaded and used.

In the borg git repository, there is scripts/glibc_check.py that can determine
(based on the symbols’ versions they want to link to) whether a set of given
(Linux) binaries works with a given glibc version.

Why was Borg forked from Attic?

Borg was created in May 2015 in response to the difficulty of getting new
code or larger changes incorporated into Attic and establishing a bigger
developer community / more open development.

More details can be found in ticket 217 [https://github.com/jborg/attic/issues/217] that led to the fork.

Borg intends to be:

	simple:
	as simple as possible, but no simpler

	do the right thing by default, but offer options

	open:
	welcome feature requests

	accept pull requests of good quality and coding style

	give feedback on PRs that can’t be accepted “as is”

	discuss openly, don’t work in the dark

	changing:
	Borg is not compatible with Attic

	do not break compatibility accidentally, without a good reason
or without warning. allow compatibility breaking for other cases.

	if major version number changes, it may have incompatible changes

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Support

Please first read the docs, the existing issue tracker issues and mailing
list posts – a lot of stuff is already documented / explained / discussed /
filed there.

Issue Tracker

If you’ve found a bug or have a concrete feature request, please create a new
ticket on the project’s issue tracker [https://github.com/borgbackup/borg/issues].

For more general questions or discussions, IRC or mailing list are preferred.

Chat (IRC)

Join us on channel #borgbackup on chat.freenode.net.

As usual on IRC, just ask or tell directly and then patiently wait for replies.
Stay connected.

You could use the following link (after connecting, you can change the random
nickname you get by typing “/nick mydesirednickname”):

http://webchat.freenode.net/?randomnick=1&channels=%23borgbackup&uio=MTY9dHJ1ZSY5PXRydWUa8

Mailing list

To find out about the mailing list, its topic, how to subscribe, how to
unsubscribe and where you can find the archives of the list, see the
mailing list homepage [https://mail.python.org/mailman/listinfo/borgbackup].

Bounties and Fundraisers

We use BountySource [https://www.bountysource.com/teams/borgbackup] to allow
monetary contributions to the project and the developers, who push it forward.

There, you can give general funds to the borgbackup members (the developers will
then spend the funds as they deem fit). If you do not have some specific bounty
(see below), you can use this as a general way to say “Thank You!” and support
the software / project you like.

If you want to encourage developers to fix some specific issue or implement some
specific feature suggestion, you can post a new bounty or back an existing one
(they always refer to an issue in our issue tracker [https://github.com/borgbackup/borg/issues]).

As a developer, you can become a Bounty Hunter and win bounties (earn money) by
contributing to Borg, a free and open source software project.

We might also use BountySource to fund raise for some bigger goals.

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Resources

This is a collection of additional resources that are somehow related to
borgbackup.

Videos, Talks, Presentations

Some of them refer to attic, but you can do the same stuff (and more) with borgbackup.

	BorgBackup Installation and Basic Usage [https://asciinema.org/a/28691?autoplay=1&speed=2] (english screencast)

	TW’s slides for borgbackup talks / lightning talks [https://slides.com/thomaswaldmann] (just grab the latest ones)

	Attic / Borg Backup talk from GPN 2015 (media.ccc.de) [https://media.ccc.de/browse/conferences/gpn/gpn15/gpn15-6942-attic_borg_backup.html#video]

	Attic / Borg Backup talk from GPN 2015 (youtube) [https://www.youtube.com/watch?v=Nb5nXEKSN-k]

	Attic talk from Easterhegg 2015 (media.ccc.de) [https://media.ccc.de/v/eh15_-_49_-__-_saal_-_201504042130_-_attic_-_the_holy_grail_of_backups_-_thomas#video]

	Attic talk from Easterhegg 2015 (youtube) [https://www.youtube.com/watch?v=96VEAAFDtJw]

	Attic Backup: Mount your encrypted backups over ssh (youtube) [https://www.youtube.com/watch?v=BVXDFv9YMp8]

	Evolution of Borg (youtube) [https://www.youtube.com/watch?v=K4k_4wDkG6Q]

Software

	BorgWeb - a very simple web UI for BorgBackup [https://borgweb.readthedocs.io/]

	some other stuff found at the BorgBackup Github organisation [https://github.com/borgbackup/]

	borgmatic [https://torsion.org/borgmatic/] - simple wrapper script for BorgBackup that creates and prunes backups

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Changelog

Important note about pre-1.0.4 potential repo corruption

Some external errors (like network or disk I/O errors) could lead to
corruption of the backup repository due to issue #1138.

A sign that this happened is if “E” status was reported for a file that can
not be explained by problems with the source file. If you still have logs from
“borg create -v –list”, you can check for “E” status.

Here is what could cause corruption and what you can do now:

	I/O errors (e.g. repo disk errors) while writing data to repo.

This could lead to corrupted segment files.

Fix:

check for corrupt chunks / segments:
borg check -v --repository-only REPO

repair the repo:
borg check -v --repository-only --repair REPO

make sure everything is fixed:
borg check -v --repository-only REPO

	Unreliable network / unreliable connection to the repo.

This could lead to archive metadata corruption.

Fix:

check for corrupt archives:
borg check -v --archives-only REPO

delete the corrupt archives:
borg delete --force REPO::CORRUPT_ARCHIVE

make sure everything is fixed:
borg check -v --archives-only REPO

	In case you want to do more intensive checking.

The best check that everything is ok is to run a dry-run extraction:

borg extract -v --dry-run REPO::ARCHIVE

Version 1.0.8 (2016-10-29)

Bug fixes:

	RemoteRepository: Fix busy wait in call_many, #940

New features:

	implement borgmajor/borgminor/borgpatch placeholders, #1694
{borgversion} was already there (full version string). With the new
placeholders you can now also get e.g. 1 or 1.0 or 1.0.8.

Other changes:

	avoid previous_location mismatch, #1741

due to the changed canonicalization for relative pathes in PR #1711 / #1655
(implement /./ relpath hack), there would be a changed repo location warning
and the user would be asked if this is ok. this would break automation and
require manual intervention, which is unwanted.

thus, we automatically fix the previous_location config entry, if it only
changed in the expected way, but still means the same location.

	docs:

	deployment.rst: do not use bare variables in ansible snippet

	add clarification about append-only mode, #1689

	setup.py: add comment about requiring llfuse, #1726

	update usage.rst / api.rst

	repo url / archive location docs + typo fix

	quickstart: add a comment about other (remote) filesystems

	vagrant / tests:

	no chown when rsyncing (fixes boxes w/o vagrant group)

	fix fuse permission issues on linux/freebsd, #1544

	skip fuse test for borg binary + fakeroot

	ignore security.selinux xattrs, fixes tests on centos, #1735

Version 1.0.8rc1 (2016-10-17)

Bug fixes:

	fix signal handling (SIGINT, SIGTERM, SIGHUP), #1620 #1593
Fixes e.g. leftover lock files for quickly repeated signals (e.g. Ctrl-C
Ctrl-C) or lost connections or systemd sending SIGHUP.

	progress display: adapt formatting to narrow screens, do not crash, #1628

	borg create –read-special - fix crash on broken symlink, #1584.
also correctly processes broken symlinks. before this regressed to a crash
(5b45385) a broken symlink would’ve been skipped.

	process_symlink: fix missing backup_io()
Fixes a chmod/chown/chgrp/unlink/rename/... crash race between getting
dirents and dispatching to process_symlink.

	yes(): abort on wrong answers, saying so, #1622

	fixed exception borg serve raised when connection was closed before reposiory
was openend. add an error message for this.

	fix read-from-closed-FD issue, #1551
(this seems not to get triggered in 1.0.x, but was discovered in master)

	hashindex: fix iterators (always raise StopIteration when exhausted)
(this seems not to get triggered in 1.0.x, but was discovered in master)

	enable relative pathes in ssh:// repo URLs, via /./relpath hack, #1655

	allow repo pathes with colons, #1705

	update changed repo location immediately after acceptance, #1524

	fix debug get-obj / delete-obj crash if object not found and remote repo,
#1684

	pyinstaller: use a spec file to build borg.exe binary, exclude osxfuse dylib
on Mac OS X (avoids mismatch lib <-> driver), #1619

New features:

	add “borg key export” / “borg key import” commands, #1555, so users are able
to backup / restore their encryption keys more easily.

Supported formats are the keyfile format used by borg internally and a
special “paper” format with by line checksums for printed backups. For the
paper format, the import is an interactive process which checks each line as
soon as it is input.

	add “borg debug-refcount-obj” to determine a repo objects’ referrer counts,
#1352

Other changes:

	add “borg debug ...” subcommands
(borg debug-* still works, but will be removed in borg 1.1)

	setup.py: Add subcommand support to build_usage.

	remote: change exception message for unexpected RPC data format to indicate
dataflow direction.

	improved messages / error reporting:
	IntegrityError: add placeholder for message, so that the message we give
appears not only in the traceback, but also in the (short) error message,
#1572

	borg.key: include chunk id in exception msgs, #1571

	better messages for cache newer than repo, #1700

	vagrant (testing/build VMs):
	upgrade OSXfuse / FUSE for macOS to 3.5.2

	update Debian Wheezy boxes, #1686

	openbsd / netbsd: use own boxes, fixes misc rsync installation and
fuse/llfuse related testing issues, #1695 #1696 #1670 #1671 #1728

	docs:
	add docs for “key export” and “key import” commands, #1641

	fix inconsistency in FAQ (pv-wrapper).

	fix second block in “Easy to use” section not showing on GitHub, #1576

	add bestpractices badge

	link reference docs and faq about BORG_FILES_CACHE_TTL, #1561

	improve borg info –help, explain size infos, #1532

	add release signing key / security contact to README, #1560

	add contribution guidelines for developers

	development.rst: add sphinx_rtd_theme to the sphinx install command

	adjust border color in borg.css

	add debug-info usage help file

	internals.rst: fix typos

	setup.py: fix build_usage to always process all commands

	added docs explaining multiple –restrict-to-path flags, #1602

	add more specific warning about write-access debug commands, #1587

	clarify FAQ regarding backup of virtual machines, #1672

	tests:
	work around fuse xattr test issue with recent fakeroot

	simplify repo/hashindex tests

	travis: test fuse-enabled borg, use trusty to have a recent FUSE

	re-enable fuse tests for RemoteArchiver (no deadlocks any more)

	clean env for pytest based tests, #1714

	fuse_mount contextmanager: accept any options

Version 1.0.7 (2016-08-19)

Security fixes:

	borg serve: fix security issue with remote repository access, #1428
If you used e.g. –restrict-to-path /path/client1/ (with or without trailing
slash does not make a difference), it acted like a path prefix match using
/path/client1 (note the missing trailing slash) - the code then also allowed
working in e.g. /path/client13 or /path/client1000.

As this could accidentally lead to major security/privacy issues depending on
the pathes you use, the behaviour was changed to be a strict directory match.
That means –restrict-to-path /path/client1 (with or without trailing slash
does not make a difference) now uses /path/client1/ internally (note the
trailing slash here!) for matching and allows precisely that path AND any
path below it. So, /path/client1 is allowed, /path/client1/repo1 is allowed,
but not /path/client13 or /path/client1000.

If you willingly used the undocumented (dangerous) previous behaviour, you
may need to rearrange your –restrict-to-path pathes now. We are sorry if
that causes work for you, but we did not want a potentially dangerous
behaviour in the software (not even using a for-backwards-compat option).

Bug fixes:

	fixed repeated LockTimeout exceptions when borg serve tried to write into
a already write-locked repo (e.g. by a borg mount), #502 part b)
This was solved by the fix for #1220 in 1.0.7rc1 already.

	fix cosmetics + file leftover for “not a valid borg repository”, #1490

	Cache: release lock if cache is invalid, #1501

	borg extract –strip-components: fix leak of preloaded chunk contents

	Repository, when a InvalidRepository exception happens:
	fix spurious, empty lock.roster

	fix repo not closed cleanly

New features:

	implement borg debug-info, fixes #1122
(just calls already existing code via cli, same output as below tracebacks)

Other changes:

	skip the O_NOATIME test on GNU Hurd, fixes #1315
(this is a very minor issue and the GNU Hurd project knows the bug)

	document using a clean repo to test / build the release

Version 1.0.7rc2 (2016-08-13)

Bug fixes:

	do not write objects to repository that are bigger than the allowed size,
borg will reject reading them, #1451.

Important: if you created archives with many millions of files or
directories, please verify if you can open them successfully,
e.g. try a “borg list REPO::ARCHIVE”.

	lz4 compression: dynamically enlarge the (de)compression buffer, the static
buffer was not big enough for archives with extremely many items, #1453

	larger item metadata stream chunks, raise archive item limit by 8x, #1452

	fix untracked segments made by moved DELETEs, #1442

Impact: Previously (metadata) segments could become untracked when deleting data,
these would never be cleaned up.

	extended attributes (xattrs) related fixes:

	fixed a race condition in xattrs querying that led to the entire file not
being backed up (while logging the error, exit code = 1), #1469

	fixed a race condition in xattrs querying that led to a crash, #1462

	raise OSError including the error message derived from errno, deal with
path being a integer FD

Other changes:

	print active env var override by default, #1467

	xattr module: refactor code, deduplicate, clean up

	repository: split object size check into too small and too big

	add a transaction_id assertion, so borg init on a broken (inconsistent)
filesystem does not look like a coding error in borg, but points to the
real problem.

	explain confusing TypeError caused by compat support for old servers, #1456

	add forgotten usage help file from build_usage

	refactor/unify buffer code into helpers.Buffer class, add tests

	docs:
	document archive limitation, #1452

	improve prune examples

Version 1.0.7rc1 (2016-08-05)

Bug fixes:

	fix repo lock deadlocks (related to lock upgrade), #1220

	catch unpacker exceptions, resync, #1351

	fix borg break-lock ignoring BORG_REPO env var, #1324

	files cache performance fixes (fixes unneccessary re-reading/chunking/
hashing of unmodified files for some use cases):
	fix unintended file cache eviction, #1430

	implement BORG_FILES_CACHE_TTL, update FAQ, raise default TTL from 10
to 20, #1338

	FUSE:
	cache partially read data chunks (performance), #965, #966

	always create a root dir, #1125

	use an OrderedDict for helptext, making the build reproducible, #1346

	RemoteRepository init: always call close on exceptions, #1370 (cosmetic)

	ignore stdout/stderr broken pipe errors (cosmetic), #1116

New features:

	better borg versions management support (useful esp. for borg servers
wanting to offer multiple borg versions and for clients wanting to choose
a specific server borg version), #1392:
	add BORG_VERSION environment variable before executing “borg serve” via ssh

	add new placeholder {borgversion}

	substitute placeholders in –remote-path

	borg init –append-only option (makes using the more secure append-only mode
more convenient. when used remotely, this requires 1.0.7+ also on the borg
server), #1291.

Other changes:

	Vagrantfile:
	darwin64: upgrade to FUSE for macOS 3.4.1 (aka osxfuse), #1378

	xenial64: use user “ubuntu”, not “vagrant” (as usual), #1331

	tests:
	fix fuse tests on OS X, #1433

	docs:
	FAQ: add backup using stable filesystem names recommendation

	FAQ about glibc compatibility added, #491, glibc-check improved

	FAQ: ‘A’ unchanged file; remove ambiguous entry age sentence.

	OS X: install pkg-config to build with FUSE support, fixes #1400

	add notes about shell/sudo pitfalls with env. vars, #1380

	added platform feature matrix

	implement borg debug-dump-repo-objs

Version 1.0.6 (2016-07-12)

Bug fixes:

	Linux: handle multiple LD_PRELOAD entries correctly, #1314, #1111

	Fix crash with unclear message if the libc is not found, #1314, #1111

Other changes:

	tests:
	Fixed O_NOATIME tests for Solaris and GNU Hurd, #1315

	Fixed sparse file tests for (file) systems not supporting it, #1310

	docs:
	Fixed syntax highlighting, #1313

	misc docs: added data processing overview picture

Version 1.0.6rc1 (2016-07-10)

New features:

	borg check –repair: heal damaged files if missing chunks re-appear (e.g. if
the previously missing chunk was added again in a later backup archive),
#148. (*) Also improved logging.

Bug fixes:

	sync_dir: silence fsync() failing with EINVAL, #1287
Some network filesystems (like smbfs) don’t support this and we use this in
repository code.

	borg mount (FUSE):
	fix directories being shadowed when contained paths were also specified,
#1295

	raise I/O Error (EIO) on damaged files (unless -o allow_damaged_files is
used), #1302. (*)

	borg extract: warn if a damaged file is extracted, #1299. (*)

	Added some missing return code checks (ChunkIndex._add, hashindex_resize).

	borg check: fix/optimize initial hash table size, avoids resize of the table.

Other changes:

	tests:
	add more FUSE tests, #1284

	deduplicate fuse (u)mount code

	fix borg binary test issues, #862

	docs:
	changelog: added release dates to older borg releases

	fix some sphinx (docs generator) warnings, #881

Notes:

(*) Some features depend on information (chunks_healthy list) added to item
metadata when a file with missing chunks was “repaired” using all-zero
replacement chunks. The chunks_healthy list is generated since borg 1.0.4,
thus borg can’t recognize such “repaired” (but content-damaged) files if the
repair was done with an older borg version.

Version 1.0.5 (2016-07-07)

Bug fixes:

	borg mount: fix FUSE crash in xattr code on Linux introduced in 1.0.4, #1282

Other changes:

	backport some FAQ entries from master branch

	add release helper scripts

	Vagrantfile:
	centos6: no FUSE, don’t build binary

	add xz for redhat-like dists

Version 1.0.4 (2016-07-07)

New features:

	borg serve –append-only, #1168
This was included because it was a simple change (append-only functionality
was already present via repository config file) and makes better security now
practically usable.

	BORG_REMOTE_PATH environment variable, #1258
This was included because it was a simple change (–remote-path cli option
was already present) and makes borg much easier to use if you need it.

	Repository: cleanup incomplete transaction on “no space left” condition.
In many cases, this can avoid a 100% full repo filesystem (which is very
problematic as borg always needs free space - even to delete archives).

Bug fixes:

	Fix wrong handling and reporting of OSErrors in borg create, #1138.
This was a serious issue: in the context of “borg create”, errors like
repository I/O errors (e.g. disk I/O errors, ssh repo connection errors)
were handled badly and did not lead to a crash (which would be good for this
case, because the repo transaction would be incomplete and trigger a
transaction rollback to clean up).
Now, error handling for source files is cleanly separated from every other
error handling, so only problematic input files are logged and skipped.

	Implement fail-safe error handling for borg extract.
Note that this isn’t nearly as critical as the borg create error handling
bug, since nothing is written to the repo. So this was “merely” misleading
error reporting.

	Add missing error handler in directory attr restore loop.

	repo: make sure write data hits disk before the commit tag (#1236) and also
sync the containing directory.

	FUSE: getxattr fail must use errno.ENOATTR, #1126
(fixes Mac OS X Finder malfunction: “zero bytes” file length, access denied)

	borg check –repair: do not lose information about the good/original chunks.
If we do not lose the original chunk IDs list when “repairing” a file
(replacing missing chunks with all-zero chunks), we have a chance to “heal”
the file back into its original state later, in case the chunks re-appear
(e.g. in a fresh backup). Healing is not implemented yet, see #148.

	fixes for –read-special mode:
	ignore known files cache, #1241

	fake regular file mode, #1214

	improve symlinks handling, #1215

	remove passphrase from subprocess environment, #1105

	Ignore empty index file (will trigger index rebuild), #1195

	add missing placeholder support for –prefix, #1027

	improve exception handling for placeholder replacement

	catch and format exceptions in arg parsing

	helpers: fix “undefined name ‘e’” in exception handler

	better error handling for missing repo manifest, #1043

	borg delete:
	make it possible to delete a repo without manifest

	borg delete –forced allows to delete corrupted archives, #1139

	borg check:
	make borg check work for empty repo

	fix resync and msgpacked item qualifier, #1135

	rebuild_manifest: fix crash if ‘name’ or ‘time’ key were missing.

	better validation of item metadata dicts, #1130

	better validation of archive metadata dicts

	close the repo on exit - even if rollback did not work, #1197.
This is rather cosmetic, it avoids repo closing in the destructor.

	tests:
	fix sparse file test, #1170

	flake8: ignore new F405, #1185

	catch “invalid argument” on cygwin, #257

	fix sparseness assertion in test prep, #1264

Other changes:

	make borg build/work on OpenSSL 1.0 and 1.1, #1187

	docs / help:
	fix / clarify prune help, #1143

	fix “patterns” help formatting

	add missing docs / help about placeholders

	resources: rename atticmatic to borgmatic

	document sshd settings, #545

	more details about checkpoints, add split trick, #1171

	support docs: add freenode web chat link, #1175

	add prune visualization / example, #723

	add note that Fnmatch is default, #1247

	make clear that lzma levels > 6 are a waste of cpu cycles

	add a “do not edit” note to auto-generated files, #1250

	update cygwin installation docs

	repository interoperability with borg master (1.1dev) branch:
	borg check: read item metadata keys from manifest, #1147

	read v2 hints files, #1235

	fix hints file “unknown version” error handling bug

	tests: add tests for format_line

	llfuse: update version requirement for freebsd

	Vagrantfile:
	use openbsd 5.9, #716

	do not install llfuse on netbsd (broken)

	update OSXfuse to version 3.3.3

	use Python 3.5.2 to build the binaries

	glibc compatibility checker: scripts/glibc_check.py

	add .eggs to .gitignore

Version 1.0.3 (2016-05-20)

Bug fixes:

	prune: avoid that checkpoints are kept and completed archives are deleted in
a prune run), #997

	prune: fix commandline argument validation - some valid command lines were
considered invalid (annoying, but harmless), #942

	fix capabilities extraction on Linux (set xattrs last, after chown()), #1069

	repository: fix commit tags being seen in data

	when probing key files, do binary reads. avoids crash when non-borg binary
files are located in borg’s key files directory.

	handle SIGTERM and make a clean exit - avoids orphan lock files.

	repository cache: don’t cache large objects (avoid using lots of temp. disk
space), #1063

Other changes:

	Vagrantfile: OS X: update osxfuse / install lzma package, #933

	setup.py: add check for platform_darwin.c

	setup.py: on freebsd, use a llfuse release that builds ok

	docs / help:
	update readthedocs URLs, #991

	add missing docs for “borg break-lock”, #992

	borg create help: add some words to about the archive name

	borg create help: document format tags, #894

Version 1.0.2 (2016-04-16)

Bug fixes:

	fix malfunction and potential corruption on (nowadays rather rare) big-endian
architectures or bi-endian archs in (rare) BE mode. #886, #889

cache resync / index merge was malfunctioning due to this, potentially
leading to data loss. borg info had cosmetic issues (displayed wrong values).

note: all (widespread) little-endian archs (like x86/x64) or bi-endian archs
in (widespread) LE mode (like ARMEL, MIPSEL, ...) were NOT affected.

	add overflow and range checks for 1st (special) uint32 of the hashindex
values, switch from int32 to uint32.

	fix so that refcount will never overflow, but just stick to max. value after
a overflow would have occured.

	borg delete: fix –cache-only for broken caches, #874

Makes –cache-only idempotent: it won’t fail if the cache is already deleted.

	fixed borg create –one-file-system erroneously traversing into other
filesystems (if starting fs device number was 0), #873

	workround a bug in Linux fadvise FADV_DONTNEED, #907

Other changes:

	better test coverage for hashindex, incl. overflow testing, checking correct
computations so endianness issues would be discovered.

	reproducible doc for ProgressIndicator*, make the build reproducible.

	use latest llfuse for vagrant machines

	docs:
	use /path/to/repo in examples, fixes #901

	fix confusing usage of “repo” as archive name (use “arch”)

Version 1.0.1 (2016-04-08)

New features:

Usually there are no new features in a bugfix release, but these were added
due to their high impact on security/safety/speed or because they are fixes
also:

	append-only mode for repositories, #809, #36 (see docs)

	borg create: add –ignore-inode option to make borg detect unmodified files
even if your filesystem does not have stable inode numbers (like sshfs and
possibly CIFS).

	add options –warning, –error, –critical for missing log levels, #826.
it’s not recommended to suppress warnings or errors, but the user may decide
this on his own.
note: –warning is not given to borg serve so a <= 1.0.0 borg will still
work as server (it is not needed as it is the default).
do not use –error or –critical when using a <= 1.0.0 borg server.

Bug fixes:

	fix silently skipping EIO, #748

	add context manager for Repository (avoid orphan repository locks), #285

	do not sleep for >60s while waiting for lock, #773

	unpack file stats before passing to FUSE

	fix build on illumos

	don’t try to backup doors or event ports (Solaris and derivates)

	remove useless/misleading libc version display, #738

	test suite: reset exit code of persistent archiver, #844

	RemoteRepository: clean up pipe if remote open() fails

	Remote: don’t print tracebacks for Error exceptions handled downstream, #792

	if BORG_PASSPHRASE is present but wrong, don’t prompt for password, but fail
instead, #791

	ArchiveChecker: move “orphaned objects check skipped” to INFO log level, #826

	fix capitalization, add ellipses, change log level to debug for 2 messages,
#798

Other changes:

	update llfuse requirement, llfuse 1.0 works

	update OS / dist packages on build machines, #717

	prefer showing –info over -v in usage help, #859

	docs:
	fix cygwin requirements (gcc-g++)

	document how to debug / file filesystem issues, #664

	fix reproducible build of api docs

	RTD theme: CSS !important overwrite, #727

	Document logo font. Recreate logo png. Remove GIMP logo file.

Version 1.0.0 (2016-03-05)

The major release number change (0.x -> 1.x) indicates bigger incompatible
changes, please read the compatibility notes, adapt / test your scripts and
check your backup logs.

Compatibility notes:

	drop support for python 3.2 and 3.3, require 3.4 or 3.5, #221 #65 #490
note: we provide binaries that include python 3.5.1 and everything else
needed. they are an option in case you are stuck with < 3.4 otherwise.

	change encryption to be on by default (using “repokey” mode)

	moved keyfile keys from ~/.borg/keys to ~/.config/borg/keys,
you can either move them manually or run “borg upgrade <REPO>”

	remove support for –encryption=passphrase,
use borg migrate-to-repokey to switch to repokey mode, #97

	remove deprecated –compression <number>,
use –compression zlib,<number> instead
in case of 0, you could also use –compression none

	remove deprecated –hourly/daily/weekly/monthly/yearly
use –keep-hourly/daily/weekly/monthly/yearly instead

	remove deprecated –do-not-cross-mountpoints,
use –one-file-system instead

	disambiguate -p option, #563:

	-p now is same as –progress

	-P now is same as –prefix

	remove deprecated “borg verify”,
use “borg extract –dry-run” instead

	cleanup environment variable semantics, #355
the environment variables used to be “yes sayers” when set, this was
conceptually generalized to “automatic answerers” and they just give their
value as answer (as if you typed in that value when being asked).
See the “usage” / “Environment Variables” section of the docs for details.

	change the builtin default for –chunker-params, create 2MiB chunks, #343
–chunker-params new default: 19,23,21,4095 - old default: 10,23,16,4095

one of the biggest issues with borg < 1.0 (and also attic) was that it had a
default target chunk size of 64kiB, thus it created a lot of chunks and thus
also a huge chunk management overhead (high RAM and disk usage).

please note that the new default won’t change the chunks that you already
have in your repository. the new big chunks do not deduplicate with the old
small chunks, so expect your repo to grow at least by the size of every
changed file and in the worst case (e.g. if your files cache was lost / is
not used) by the size of every file (minus any compression you might use).

in case you want to immediately see a much lower resource usage (RAM / disk)
for chunks management, it might be better to start with a new repo than
continuing in the existing repo (with an existing repo, you’ld have to wait
until all archives with small chunks got pruned to see a lower resource
usage).

if you used the old –chunker-params default value (or if you did not use
–chunker-params option at all) and you’ld like to continue using small
chunks (and you accept the huge resource usage that comes with that), just
explicitly use borg create –chunker-params=10,23,16,4095.

	archive timestamps: the ‘time’ timestamp now refers to archive creation
start time (was: end time), the new ‘time_end’ timestamp refers to archive
creation end time. This might affect prune if your backups take rather long.
if you give a timestamp via cli this is stored into ‘time’, therefore it now
needs to mean archive creation start time.

New features:

	implement password roundtrip, #695

Bug fixes:

	remote end does not need cache nor keys directories, do not create them, #701

	added retry counter for passwords, #703

Other changes:

	fix compiler warnings, #697

	docs:
	update README.rst to new changelog location in docs/changes.rst

	add Teemu to AUTHORS

	changes.rst: fix old chunker params, #698

	FAQ: how to limit bandwidth

Version 1.0.0rc2 (2016-02-28)

New features:

	format options for location: user, pid, fqdn, hostname, now, utcnow, user

	borg list –list-format

	borg prune -v –list enables the keep/prune list output, #658

Bug fixes:

	fix _open_rb noatime handling, #657

	add a simple archivename validator, #680

	borg create –stats: show timestamps in localtime, use same labels/formatting
as borg info, #651

	llfuse compatibility fixes (now compatible with: 0.40, 0.41, 0.42)

Other changes:

	it is now possible to use “pip install borgbackup[fuse]” to automatically
install the llfuse dependency using the correct version requirement
for it. you still need to care about having installed the FUSE / build
related OS package first, though, so that building llfuse can succeed.

	Vagrant: drop Ubuntu Precise (12.04) - does not have Python >= 3.4

	Vagrant: use pyinstaller v3.1.1 to build binaries

	docs:
	borg upgrade: add to docs that only LOCAL repos are supported

	borg upgrade also handles borg 0.xx -> 1.0

	use pip extras or requirements file to install llfuse

	fix order in release process

	updated usage docs and other minor / cosmetic fixes

	verified borg examples in docs, #644

	freebsd dependency installation and fuse configuration, #649

	add example how to restore a raw device, #671

	add a hint about the dev headers needed when installing from source

	add examples for delete (and handle delete after list, before prune), #656

	update example for borg create -v –stats (use iso datetime format), #663

	added example to BORG_RSH docs

	“connection closed by remote”: add FAQ entry and point to issue #636

Version 1.0.0rc1 (2016-02-07)

New features:

	borg migrate-to-repokey (“passphrase” -> “repokey” encryption key mode)

	implement –short for borg list REPO, #611

	implement –list for borg extract (consistency with borg create)

	borg serve: overwrite client’s –restrict-to-path with ssh forced command’s
option value (but keep everything else from the client commandline), #544

	use $XDG_CONFIG_HOME/keys for keyfile keys (~/.config/borg/keys), #515

	“borg upgrade” moves the keyfile keys to the new location

	display both archive creation start and end time in “borg info”, #627

Bug fixes:

	normalize trailing slashes for the repository path, #606

	Cache: fix exception handling in __init__, release lock, #610

Other changes:

	suppress unneeded exception context (PEP 409), simpler tracebacks

	removed special code needed to deal with imperfections / incompatibilities /
missing stuff in py 3.2/3.3, simplify code that can be done simpler in 3.4

	removed some version requirements that were kept on old versions because
newer did not support py 3.2 any more

	use some py 3.4+ stdlib code instead of own/openssl/pypi code:
	use os.urandom instead of own cython openssl RAND_bytes wrapper, #493

	use hashlib.pbkdf2_hmac from py stdlib instead of own openssl wrapper

	use hmac.compare_digest instead of == operator (constant time comparison)

	use stat.filemode instead of homegrown code

	use “mock” library from stdlib, #145

	remove borg.support (with non-broken argparse copy), it is ok in 3.4+, #358

	Vagrant: copy CHANGES.rst as symlink, #592

	cosmetic code cleanups, add flake8 to tox/travis, #4

	docs / help:
	make “borg -h” output prettier, #591

	slightly rephrase prune help

	add missing example for –list option of borg create

	quote exclude line that includes an asterisk to prevent shell expansion

	fix dead link to license

	delete Ubuntu Vivid, it is not supported anymore (EOL)

	OS X binary does not work for older OS X releases, #629

	borg serve’s special support for forced/original ssh commands, #544

	misc. updates and fixes

Version 0.30.0 (2016-01-23)

Compatibility notes:

	you may need to use -v (or –info) more often to actually see output emitted
at INFO log level (because it is suppressed at the default WARNING log level).
See the “general” section in the usage docs.

	for borg create, you need –list (additionally to -v) to see the long file
list (was needed so you can have e.g. –stats alone without the long list)

	see below about BORG_DELETE_I_KNOW_WHAT_I_AM_DOING (was:
BORG_CHECK_I_KNOW_WHAT_I_AM_DOING)

Bug fixes:

	fix crash when using borg create –dry-run –keep-tag-files, #570

	make sure teardown with cleanup happens for Cache and RepositoryCache,
avoiding leftover locks and TEMP dir contents, #285 (partially), #548

	fix locking KeyError, partial fix for #502

	log stats consistently, #526

	add abbreviated weekday to timestamp format, fixes #496

	strip whitespace when loading exclusions from file

	unset LD_LIBRARY_PATH before invoking ssh, fixes strange OpenSSL library
version warning when using the borg binary, #514

	add some error handling/fallback for C library loading, #494

	added BORG_DELETE_I_KNOW_WHAT_I_AM_DOING for check in “borg delete”, #503

	remove unused “repair” rpc method name

New features:

	borg create: implement exclusions using regular expression patterns.

	borg create: implement inclusions using patterns.

	borg extract: support patterns, #361

	support different styles for patterns:
	fnmatch (fm: prefix, default when omitted), like borg <= 0.29.

	shell (sh: prefix) with * not matching directory separators and
**/ matching 0..n directories

	path prefix (pp: prefix, for unifying borg create pp1 pp2 into the
patterns system), semantics like in borg <= 0.29

	regular expression (re:), new!

	–progress option for borg upgrade (#291) and borg delete <archive>

	update progress indication more often (e.g. for borg create within big
files or for borg check repo), #500

	finer chunker granularity for items metadata stream, #547, #487

	borg create –list now used (additionally to -v) to enable the verbose
file list output

	display borg version below tracebacks, #532

Other changes:

	hashtable size (and thus: RAM and disk consumption) follows a growth policy:
grows fast while small, grows slower when getting bigger, #527

	Vagrantfile: use pyinstaller 3.1 to build binaries, freebsd sqlite3 fix,
fixes #569

	no separate binaries for centos6 any more because the generic linux binaries
also work on centos6 (or in general: on systems with a slightly older glibc
than debian7

	dev environment: require virtualenv<14.0 so we get a py32 compatible pip

	docs:
	add space-saving chunks.archive.d trick to FAQ

	important: clarify -v and log levels in usage -> general, please read!

	sphinx configuration: create a simple man page from usage docs

	add a repo server setup example

	disable unneeded SSH features in authorized_keys examples for security.

	borg prune only knows “–keep-within” and not “–within”

	add gource video to resources docs, #507

	add netbsd install instructions

	authors: make it more clear what refers to borg and what to attic

	document standalone binary requirements, #499

	rephrase the mailing list section

	development docs: run build_api and build_usage before tagging release

	internals docs: hash table max. load factor is 0.75 now

	markup, typo, grammar, phrasing, clarifications and other fixes.

	add gcc gcc-c++ to redhat/fedora/corora install docs, fixes #583

Version 0.29.0 (2015-12-13)

Compatibility notes:

	when upgrading to 0.29.0 you need to upgrade client as well as server
installations due to the locking and commandline interface changes otherwise
you’ll get an error msg about a RPC protocol mismatch or a wrong commandline
option.
if you run a server that needs to support both old and new clients, it is
suggested that you have a “borg-0.28.2” and a “borg-0.29.0” command.
clients then can choose via e.g. “borg –remote-path=borg-0.29.0 ...”.

	the default waiting time for a lock changed from infinity to 1 second for a
better interactive user experience. if the repo you want to access is
currently locked, borg will now terminate after 1s with an error message.
if you have scripts that shall wait for the lock for a longer time, use
–lock-wait N (with N being the maximum wait time in seconds).

Bug fixes:

	hash table tuning (better chosen hashtable load factor 0.75 and prime initial
size of 1031 gave ~1000x speedup in some scenarios)

	avoid creation of an orphan lock for one case, #285

	–keep-tag-files: fix file mode and multiple tag files in one directory, #432

	fixes for “borg upgrade” (attic repo converter), #466

	remove –progress isatty magic (and also –no-progress option) again, #476

	borg init: display proper repo URL

	fix format of umask in help pages, #463

New features:

	implement –lock-wait, support timeout for UpgradableLock, #210

	implement borg break-lock command, #157

	include system info below traceback, #324

	sane remote logging, remote stderr, #461:
	remote log output: intercept it and log it via local logging system,
with “Remote: ” prefixed to message. log remote tracebacks.

	remote stderr: output it to local stderr with “Remote: ” prefixed.

	add –debug and –info (same as –verbose) to set the log level of the
builtin logging configuration (which otherwise defaults to warning), #426
note: there are few messages emitted at DEBUG level currently.

	optionally configure logging via env var BORG_LOGGING_CONF

	add –filter option for status characters: e.g. to show only the added
or modified files (and also errors), use “borg create -v –filter=AME ...”.

	more progress indicators, #394

	use ISO-8601 date and time format, #375

	“borg check –prefix” to restrict archive checking to that name prefix, #206

Other changes:

	hashindex_add C implementation (speed up cache re-sync for new archives)

	increase FUSE read_size to 1024 (speed up metadata operations)

	check/delete/prune –save-space: free unused segments quickly, #239

	increase rpc protocol version to 2 (see also Compatibility notes), #458

	silence borg by default (via default log level WARNING)

	get rid of C compiler warnings, #391

	upgrade OS X FUSE to 3.0.9 on the OS X binary build system

	use python 3.5.1 to build binaries

	docs:
	new mailing list borgbackup@python.org, #468

	readthedocs: color and logo improvements

	load coverage icons over SSL (avoids mixed content)

	more precise binary installation steps

	update release procedure docs about OS X FUSE

	FAQ entry about unexpected ‘A’ status for unchanged file(s), #403

	add docs about ‘E’ file status

	add “borg upgrade” docs, #464

	add developer docs about output and logging

	clarify encryption, add note about client-side encryption

	add resources section, with videos, talks, presentations, #149

	Borg moved to Arch Linux [community]

	fix wrong installation instructions for archlinux

Version 0.28.2 (2015-11-15)

New features:

	borg create –exclude-if-present TAGFILE - exclude directories that have the
given file from the backup. You can additionally give –keep-tag-files to
preserve just the directory roots and the tag-files (but not backup other
directory contents), #395, attic #128, attic #142

Other changes:

	do not create docs sources at build time (just have them in the repo),
completely remove have_cython() hack, do not use the “mock” library at build
time, #384

	avoid hidden import, make it easier for PyInstaller, easier fix for #218

	docs:
	add description of item flags / status output, fixes #402

	explain how to regenerate usage and API files (build_api or
build_usage) and when to commit usage files directly into git, #384

	minor install docs improvements

Version 0.28.1 (2015-11-08)

Bug fixes:

	do not try to build api / usage docs for production install,
fixes unexpected “mock” build dependency, #384

Other changes:

	avoid using msgpack.packb at import time

	fix formatting issue in changes.rst

	fix build on readthedocs

Version 0.28.0 (2015-11-08)

Compatibility notes:

	changed return codes (exit codes), see docs. in short:
old: 0 = ok, 1 = error. now: 0 = ok, 1 = warning, 2 = error

New features:

	refactor return codes (exit codes), fixes #61

	add –show-rc option enable “terminating with X status, rc N” output, fixes 58, #351

	borg create backups atime and ctime additionally to mtime, fixes #317
- extract: support atime additionally to mtime
- FUSE: support ctime and atime additionally to mtime

	support borg –version

	emit a warning if we have a slow msgpack installed

	borg list –prefix=thishostname- REPO, fixes #205

	Debug commands (do not use except if you know what you do: debug-get-obj,
debug-put-obj, debug-delete-obj, debug-dump-archive-items.

Bug fixes:

	setup.py: fix bug related to BORG_LZ4_PREFIX processing

	fix “check” for repos that have incomplete chunks, fixes #364

	borg mount: fix unlocking of repository at umount time, fixes #331

	fix reading files without touching their atime, #334

	non-ascii ACL fixes for Linux, FreeBSD and OS X, #277

	fix acl_use_local_uid_gid() and add a test for it, attic #359

	borg upgrade: do not upgrade repositories in place by default, #299

	fix cascading failure with the index conversion code, #269

	borg check: implement ‘cmdline’ archive metadata value decoding, #311

	fix RobustUnpacker, it missed some metadata keys (new atime and ctime keys
were missing, but also bsdflags). add check for unknown metadata keys.

	create from stdin: also save atime, ctime (cosmetic)

	use default_notty=False for confirmations, fixes #345

	vagrant: fix msgpack installation on centos, fixes #342

	deal with unicode errors for symlinks in same way as for regular files and
have a helpful warning message about how to fix wrong locale setup, fixes #382

	add ACL keys the RobustUnpacker must know about

Other changes:

	improve file size displays, more flexible size formatters

	explicitly commit to the units standard, #289

	archiver: add E status (means that an error occurred when processing this
(single) item

	do binary releases via “github releases”, closes #214

	create: use -x and –one-file-system (was: –do-not-cross-mountpoints), #296

	a lot of changes related to using “logging” module and screen output, #233

	show progress display if on a tty, output more progress information, #303

	factor out status output so it is consistent, fix surrogates removal,
maybe fixes #309

	move away from RawConfigParser to ConfigParser

	archive checker: better error logging, give chunk_id and sequence numbers
(can be used together with borg debug-dump-archive-items).

	do not mention the deprecated passphrase mode

	emit a deprecation warning for –compression N (giving a just a number)

	misc .coverragerc fixes (and coverage measurement improvements), fixes #319

	refactor confirmation code, reduce code duplication, add tests

	prettier error messages, fixes #307, #57

	tests:
	add a test to find disk-full issues, #327

	travis: also run tests on Python 3.5

	travis: use tox -r so it rebuilds the tox environments

	test the generated pyinstaller-based binary by archiver unit tests, #215

	vagrant: tests: announce whether fakeroot is used or not

	vagrant: add vagrant user to fuse group for debianoid systems also

	vagrant: llfuse install on darwin needs pkgconfig installed

	vagrant: use pyinstaller from develop branch, fixes #336

	benchmarks: test create, extract, list, delete, info, check, help, fixes #146

	benchmarks: test with both the binary and the python code

	archiver tests: test with both the binary and the python code, fixes #215

	make basic test more robust

	docs:
	moved docs to borgbackup.readthedocs.org, #155

	a lot of fixes and improvements, use mobile-friendly RTD standard theme

	use zlib,6 compression in some examples, fixes #275

	add missing rename usage to docs, closes #279

	include the help offered by borg help <topic> in the usage docs, fixes #293

	include a list of major changes compared to attic into README, fixes #224

	add OS X install instructions, #197

	more details about the release process, #260

	fix linux glibc requirement (binaries built on debian7 now)

	build: move usage and API generation to setup.py

	update docs about return codes, #61

	remove api docs (too much breakage on rtd)

	borgbackup install + basics presentation (asciinema)

	describe the current style guide in documentation

	add section about debug commands

	warn about not running out of space

	add example for rename

	improve chunker params docs, fixes #362

	minor development docs update

Version 0.27.0 (2015-10-07)

New features:

	“borg upgrade” command - attic -> borg one time converter / migration, #21

	temporary hack to avoid using lots of disk space for chunks.archive.d, #235:
To use it: rm -rf chunks.archive.d ; touch chunks.archive.d

	respect XDG_CACHE_HOME, attic #181

	add support for arbitrary SSH commands, attic #99

	borg delete –cache-only REPO (only delete cache, not REPO), attic #123

Bug fixes:

	use Debian 7 (wheezy) to build pyinstaller borgbackup binaries, fixes slow
down observed when running the Centos6-built binary on Ubuntu, #222

	do not crash on empty lock.roster, fixes #232

	fix multiple issues with the cache config version check, #234

	fix segment entry header size check, attic #352
plus other error handling improvements / code deduplication there.

	always give segment and offset in repo IntegrityErrors

Other changes:

	stop producing binary wheels, remove docs about it, #147

	docs:
- add warning about prune
- generate usage include files only as needed
- development docs: add Vagrant section
- update / improve / reformat FAQ
- hint to single-file pyinstaller binaries from README

Version 0.26.1 (2015-09-28)

This is a minor update, just docs and new pyinstaller binaries.

	docs update about python and binary requirements

	better docs for –read-special, fix #220

	re-built the binaries, fix #218 and #213 (glibc version issue)

	update web site about single-file pyinstaller binaries

Note: if you did a python-based installation, there is no need to upgrade.

Version 0.26.0 (2015-09-19)

New features:

	Faster cache sync (do all in one pass, remove tar/compression stuff), #163

	BORG_REPO env var to specify the default repo, #168

	read special files as if they were regular files, #79

	implement borg create –dry-run, attic issue #267

	Normalize paths before pattern matching on OS X, #143

	support OpenBSD and NetBSD (except xattrs/ACLs)

	support / run tests on Python 3.5

Bug fixes:

	borg mount repo: use absolute path, attic #200, attic #137

	chunker: use off_t to get 64bit on 32bit platform, #178

	initialize chunker fd to -1, so it’s not equal to STDIN_FILENO (0)

	fix reaction to “no” answer at delete repo prompt, #182

	setup.py: detect lz4.h header file location

	to support python < 3.2.4, add less buggy argparse lib from 3.2.6 (#194)

	fix for obtaining char * from temporary Python value (old code causes
a compile error on Mint 17.2)

	llfuse 0.41 install troubles on some platforms, require < 0.41
(UnicodeDecodeError exception due to non-ascii llfuse setup.py)

	cython code: add some int types to get rid of unspecific python add /
subtract operations (avoid undefined symbol FPE_... error on some platforms)

	fix verbose mode display of stdin backup

	extract: warn if a include pattern never matched, fixes #209,
implement counters for Include/ExcludePatterns

	archive names with slashes are invalid, attic issue #180

	chunker: add a check whether the POSIX_FADV_DONTNEED constant is defined -
fixes building on OpenBSD.

Other changes:

	detect inconsistency / corruption / hash collision, #170

	replace versioneer with setuptools_scm, #106

	docs:
	pkg-config is needed for llfuse installation

	be more clear about pruning, attic issue #132

	unit tests:
	xattr: ignore security.selinux attribute showing up

	ext3 seems to need a bit more space for a sparse file

	do not test lzma level 9 compression (avoid MemoryError)

	work around strange mtime granularity issue on netbsd, fixes #204

	ignore st_rdev if file is not a block/char device, fixes #203

	stay away from the setgid and sticky mode bits

	use Vagrant to do easy cross-platform testing (#196), currently:
	Debian 7 “wheezy” 32bit, Debian 8 “jessie” 64bit

	Ubuntu 12.04 32bit, Ubuntu 14.04 64bit

	Centos 7 64bit

	FreeBSD 10.2 64bit

	OpenBSD 5.7 64bit

	NetBSD 6.1.5 64bit

	Darwin (OS X Yosemite)

Version 0.25.0 (2015-08-29)

Compatibility notes:

	lz4 compression library (liblz4) is a new requirement (#156)

	the new compression code is very compatible: as long as you stay with zlib
compression, older borg releases will still be able to read data from a
repo/archive made with the new code (note: this is not the case for the
default “none” compression, use “zlib,0” if you want a “no compression” mode
that can be read by older borg). Also the new code is able to read repos and
archives made with older borg versions (for all zlib levels 0..9).

Deprecations:

	–compression N (with N being a number, as in 0.24) is deprecated.
We keep the –compression 0..9 for now to not break scripts, but it is
deprecated and will be removed later, so better fix your scripts now:
–compression 0 (as in 0.24) is the same as –compression zlib,0 (now).
BUT: if you do not want compression, you rather want –compression none
(which is the default).
–compression 1 (in 0.24) is the same as –compression zlib,1 (now)
–compression 9 (in 0.24) is the same as –compression zlib,9 (now)

New features:

	create –compression none (default, means: do not compress, just pass through
data “as is”. this is more efficient than zlib level 0 as used in borg 0.24)

	create –compression lz4 (super-fast, but not very high compression)

	create –compression zlib,N (slower, higher compression, default for N is 6)

	create –compression lzma,N (slowest, highest compression, default N is 6)

	honor the nodump flag (UF_NODUMP) and do not backup such items

	list –short just outputs a simple list of the files/directories in an archive

Bug fixes:

	fixed –chunker-params parameter order confusion / malfunction, fixes #154

	close fds of segments we delete (during compaction)

	close files which fell out the lrucache

	fadvise DONTNEED now is only called for the byte range actually read, not for
the whole file, fixes #158.

	fix issue with negative “all archives” size, fixes #165

	restore_xattrs: ignore if setxattr fails with EACCES, fixes #162

Other changes:

	remove fakeroot requirement for tests, tests run faster without fakeroot
(test setup does not fail any more without fakeroot, so you can run with or
without fakeroot), fixes #151 and #91.

	more tests for archiver

	recover_segment(): don’t assume we have an fd for segment

	lrucache refactoring / cleanup, add dispose function, py.test tests

	generalize hashindex code for any key length (less hardcoding)

	lock roster: catch file not found in remove() method and ignore it

	travis CI: use requirements file

	improved docs:
	replace hack for llfuse with proper solution (install libfuse-dev)

	update docs about compression

	update development docs about fakeroot

	internals: add some words about lock files / locking system

	support: mention BountySource and for what it can be used

	theme: use a lighter green

	add pypi, wheel, dist package based install docs

	split install docs into system-specific preparations and generic instructions

Version 0.24.0 (2015-08-09)

Incompatible changes (compared to 0.23):

	borg now always issues –umask NNN option when invoking another borg via ssh
on the repository server. By that, it’s making sure it uses the same umask
for remote repos as for local ones. Because of this, you must upgrade both
server and client(s) to 0.24.

	the default umask is 077 now (if you do not specify via –umask) which might
be a different one as you used previously. The default umask avoids that
you accidentally give access permissions for group and/or others to files
created by borg (e.g. the repository).

Deprecations:

	“–encryption passphrase” mode is deprecated, see #85 and #97.
See the new “–encryption repokey” mode for a replacement.

New features:

	borg create –chunker-params ... to configure the chunker, fixes #16
(attic #302, attic #300, and somehow also #41).
This can be used to reduce memory usage caused by chunk management overhead,
so borg does not create a huge chunks index/repo index and eats all your RAM
if you back up lots of data in huge files (like VM disk images).
See docs/misc/create_chunker-params.txt for more information.

	borg info now reports chunk counts in the chunk index.

	borg create –compression 0..9 to select zlib compression level, fixes #66
(attic #295).

	borg init –encryption repokey (to store the encryption key into the repo),
fixes #85

	improve at-end error logging, always log exceptions and set exit_code=1

	LoggedIO: better error checks / exceptions / exception handling

	implement –remote-path to allow non-default-path borg locations, #125

	implement –umask M and use 077 as default umask for better security, #117

	borg check: give a named single archive to it, fixes #139

	cache sync: show progress indication

	cache sync: reimplement the chunk index merging in C

Bug fixes:

	fix segfault that happened for unreadable files (chunker: n needs to be a
signed size_t), #116

	fix the repair mode, #144

	repo delete: add destroy to allowed rpc methods, fixes issue #114

	more compatible repository locking code (based on mkdir), maybe fixes #92
(attic #317, attic #201).

	better Exception msg if no Borg is installed on the remote repo server, #56

	create a RepositoryCache implementation that can cope with >2GiB,
fixes attic #326.

	fix Traceback when running check –repair, attic #232

	clarify help text, fixes #73.

	add help string for –no-files-cache, fixes #140

Other changes:

	improved docs:
	added docs/misc directory for misc. writeups that won’t be included
“as is” into the html docs.

	document environment variables and return codes (attic #324, attic #52)

	web site: add related projects, fix web site url, IRC #borgbackup

	Fedora/Fedora-based install instructions added to docs

	Cygwin-based install instructions added to docs

	updated AUTHORS

	add FAQ entries about redundancy / integrity

	clarify that borg extract uses the cwd as extraction target

	update internals doc about chunker params, memory usage and compression

	added docs about development

	add some words about resource usage in general

	document how to backup a raw disk

	add note about how to run borg from virtual env

	add solutions for (ll)fuse installation problems

	document what borg check does, fixes #138

	reorganize borgbackup.github.io sidebar, prev/next at top

	deduplicate and refactor the docs / README.rst

	use borg-tmp as prefix for temporary files / directories

	short prune options without “keep-” are deprecated, do not suggest them

	improved tox configuration

	remove usage of unittest.mock, always use mock from pypi

	use entrypoints instead of scripts, for better use of the wheel format and
modern installs

	add requirements.d/development.txt and modify tox.ini

	use travis-ci for testing based on Linux and (new) OS X

	use coverage.py, pytest-cov and codecov.io for test coverage support

I forgot to list some stuff already implemented in 0.23.0, here they are:

New features:

	efficient archive list from manifest, meaning a big speedup for slow
repo connections and “list <repo>”, “delete <repo>”, “prune” (attic #242,
attic #167)

	big speedup for chunks cache sync (esp. for slow repo connections), fixes #18

	hashindex: improve error messages

Other changes:

	explicitly specify binary mode to open binary files

	some easy micro optimizations

Version 0.23.0 (2015-06-11)

Incompatible changes (compared to attic, fork related):

	changed sw name and cli command to “borg”, updated docs

	package name (and name in urls) uses “borgbackup” to have less collisions

	changed repo / cache internal magic strings from ATTIC* to BORG*,
changed cache location to .cache/borg/ - this means that it currently won’t
accept attic repos (see issue #21 about improving that)

Bug fixes:

	avoid defect python-msgpack releases, fixes attic #171, fixes attic #185

	fix traceback when trying to do unsupported passphrase change, fixes attic #189

	datetime does not like the year 10.000, fixes attic #139

	fix “info” all archives stats, fixes attic #183

	fix parsing with missing microseconds, fixes attic #282

	fix misleading hint the fuse ImportError handler gave, fixes attic #237

	check unpacked data from RPC for tuple type and correct length, fixes attic #127

	fix Repository._active_txn state when lock upgrade fails

	give specific path to xattr.is_enabled(), disable symlink setattr call that
always fails

	fix test setup for 32bit platforms, partial fix for attic #196

	upgraded versioneer, PEP440 compliance, fixes attic #257

New features:

	less memory usage: add global option –no-cache-files

	check –last N (only check the last N archives)

	check: sort archives in reverse time order

	rename repo::oldname newname (rename repository)

	create -v output more informative

	create –progress (backup progress indicator)

	create –timestamp (utc string or reference file/dir)

	create: if “-” is given as path, read binary from stdin

	extract: if –stdout is given, write all extracted binary data to stdout

	extract –sparse (simple sparse file support)

	extra debug information for ‘fread failed’

	delete <repo> (deletes whole repo + local cache)

	FUSE: reflect deduplication in allocated blocks

	only allow whitelisted RPC calls in server mode

	normalize source/exclude paths before matching

	use posix_fadvise to not spoil the OS cache, fixes attic #252

	toplevel error handler: show tracebacks for better error analysis

	sigusr1 / sigint handler to print current file infos - attic PR #286

	RPCError: include the exception args we get from remote

Other changes:

	source: misc. cleanups, pep8, style

	docs and faq improvements, fixes, updates

	cleanup crypto.pyx, make it easier to adapt to other AES modes

	do os.fsync like recommended in the python docs

	source: Let chunker optionally work with os-level file descriptor.

	source: Linux: remove duplicate os.fsencode calls

	source: refactor _open_rb code a bit, so it is more consistent / regular

	source: refactor indicator (status) and item processing

	source: use py.test for better testing, flake8 for code style checks

	source: fix tox >=2.0 compatibility (test runner)

	pypi package: add python version classifiers, add FreeBSD to platforms

Attic Changelog

Here you can see the full list of changes between each Attic release until Borg
forked from Attic:

Version 0.17

(bugfix release, released on X)

	Fix hashindex ARM memory alignment issue (#309)

	Improve hashindex error messages (#298)

Version 0.16

(bugfix release, released on May 16, 2015)

	Fix typo preventing the security confirmation prompt from working (#303)

	Improve handling of systems with improperly configured file system encoding (#289)

	Fix “All archives” output for attic info. (#183)

	More user friendly error message when repository key file is not found (#236)

	Fix parsing of iso 8601 timestamps with zero microseconds (#282)

Version 0.15

(bugfix release, released on Apr 15, 2015)

	xattr: Be less strict about unknown/unsupported platforms (#239)

	Reduce repository listing memory usage (#163).

	Fix BrokenPipeError for remote repositories (#233)

	Fix incorrect behavior with two character directory names (#265, #268)

	Require approval before accessing relocated/moved repository (#271)

	Require approval before accessing previously unknown unencrypted repositories (#271)

	Fix issue with hash index files larger than 2GB.

	Fix Python 3.2 compatibility issue with noatime open() (#164)

	Include missing pyx files in dist files (#168)

Version 0.14

(feature release, released on Dec 17, 2014)

	Added support for stripping leading path segments (#95)
“attic extract –strip-segments X”

	Add workaround for old Linux systems without acl_extended_file_no_follow (#96)

	Add MacPorts’ path to the default openssl search path (#101)

	HashIndex improvements, eliminates unnecessary IO on low memory systems.

	Fix “Number of files” output for attic info. (#124)

	limit create file permissions so files aren’t read while restoring

	Fix issue with empty xattr values (#106)

Version 0.13

(feature release, released on Jun 29, 2014)

	Fix sporadic “Resource temporarily unavailable” when using remote repositories

	Reduce file cache memory usage (#90)

	Faster AES encryption (utilizing AES-NI when available)

	Experimental Linux, OS X and FreeBSD ACL support (#66)

	Added support for backup and restore of BSDFlags (OSX, FreeBSD) (#56)

	Fix bug where xattrs on symlinks were not correctly restored

	Added cachedir support. CACHEDIR.TAG compatible cache directories
can now be excluded using --exclude-caches (#74)

	Fix crash on extreme mtime timestamps (year 2400+) (#81)

	Fix Python 3.2 specific lockf issue (EDEADLK)

Version 0.12

(feature release, released on April 7, 2014)

	Python 3.4 support (#62)

	Various documentation improvements a new style

	attic mount now supports mounting an entire repository not only
individual archives (#59)

	Added option to restrict remote repository access to specific path(s):
attic serve --restrict-to-path X (#51)

	Include “all archives” size information in “–stats” output. (#54)

	Added --stats option to attic delete and attic prune

	Fixed bug where attic prune used UTC instead of the local time zone
when determining which archives to keep.

	Switch to SI units (Power of 1000 instead 1024) when printing file sizes

Version 0.11

(feature release, released on March 7, 2014)

	New “check” command for repository consistency checking (#24)

	Documentation improvements

	Fix exception during “attic create” with repeated files (#39)

	New “–exclude-from” option for attic create/extract/verify.

	Improved archive metadata deduplication.

	“attic verify” has been deprecated. Use “attic extract –dry-run” instead.

	“attic prune –hourly|daily|...” has been deprecated.
Use “attic prune –keep-hourly|daily|...” instead.

	Ignore xattr errors during “extract” if not supported by the filesystem. (#46)

Version 0.10

(bugfix release, released on Jan 30, 2014)

	Fix deadlock when extracting 0 sized files from remote repositories

	“–exclude” wildcard patterns are now properly applied to the full path
not just the file name part (#5).

	Make source code endianness agnostic (#1)

Version 0.9

(feature release, released on Jan 23, 2014)

	Remote repository speed and reliability improvements.

	Fix sorting of segment names to ignore NFS left over files. (#17)

	Fix incorrect display of time (#13)

	Improved error handling / reporting. (#12)

	Use fcntl() instead of flock() when locking repository/cache. (#15)

	Let ssh figure out port/user if not specified so we don’t override .ssh/config (#9)

	Improved libcrypto path detection (#23).

Version 0.8.1

(bugfix release, released on Oct 4, 2013)

	Fix segmentation fault issue.

Version 0.8

(feature release, released on Oct 3, 2013)

	Fix xattr issue when backing up sshfs filesystems (#4)

	Fix issue with excessive index file size (#6)

	Support access of read only repositories.

	
	New syntax to enable repository encryption:

	attic init –encryption=”none|passphrase|keyfile”.

	Detect and abort if repository is older than the cache.

Version 0.7

(feature release, released on Aug 5, 2013)

	Ported to FreeBSD

	Improved documentation

	Experimental: Archives mountable as fuse filesystems.

	The “user.” prefix is no longer stripped from xattrs on Linux

Version 0.6.1

(bugfix release, released on July 19, 2013)

	Fixed an issue where mtime was not always correctly restored.

Version 0.6

First public release on July 9, 2013

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Internals

This page documents the internal data structures and storage
mechanisms of Borg. It is partly based on mailing list
discussion about internals [http://librelist.com/browser/attic/2014/5/6/questions-and-suggestions-about-inner-working-of-attic>] and also on static code analysis.

Repository and Archives

Borg stores its data in a Repository. Each repository can
hold multiple Archives, which represent individual backups that
contain a full archive of the files specified when the backup was
performed. Deduplication is performed across multiple backups, both on
data and metadata, using Chunks created by the chunker using the Buzhash [https://en.wikipedia.org/wiki/Buzhash]
algorithm.

Each repository has the following file structure:

	README

	simple text file telling that this is a Borg repository

	config

	repository configuration

	data/

	directory where the actual data is stored

	hints.%d

	hints for repository compaction

	index.%d

	repository index

	lock.roster and lock.exclusive/*

	used by the locking system to manage shared and exclusive locks

Lock files

Borg uses locks to get (exclusive or shared) access to the cache and
the repository.

The locking system is based on creating a directory lock.exclusive (for
exclusive locks). Inside the lock directory, there is a file indicating
hostname, process id and thread id of the lock holder.

There is also a json file lock.roster that keeps a directory of all shared
and exclusive lockers.

If the process can create the lock.exclusive directory for a resource, it has
the lock for it. If creation fails (because the directory has already been
created by some other process), lock acquisition fails.

The cache lock is usually in ~/.cache/borg/REPOID/lock.*.
The repository lock is in repository/lock.*.

In case you run into troubles with the locks, you can use the borg break-lock
command after you first have made sure that no Borg process is
running on any machine that accesses this resource. Be very careful, the cache
or repository might get damaged if multiple processes use it at the same time.

Config file

Each repository has a config file which which is a INI-style file
and looks like this:

[repository]
version = 1
segments_per_dir = 10000
max_segment_size = 5242880
id = 57d6c1d52ce76a836b532b0e42e677dec6af9fca3673db511279358828a21ed6

This is where the repository.id is stored. It is a unique
identifier for repositories. It will not change if you move the
repository around so you can make a local transfer then decide to move
the repository to another (even remote) location at a later time.

Keys

The key to address the key/value store is usually computed like this:

key = id = id_hash(unencrypted_data)

The id_hash function is:

	sha256 (no encryption keys available)

	hmac-sha256 (encryption keys available)

Segments and archives

A Borg repository is a filesystem based transactional key/value
store. It makes extensive use of msgpack [https://msgpack.org/] to store data and, unless
otherwise noted, data is stored in msgpack [https://msgpack.org/] encoded files.

Objects referenced by a key are stored inline in files (segments) of approx.
5MB size in numbered subdirectories of repo/data.

They contain:

	header size

	crc

	size

	tag

	key

	data

Segments are built locally, and then uploaded. Those files are
strictly append-only and modified only once.

Tag is either PUT, DELETE, or COMMIT. A segment file is
basically a transaction log where each repository operation is
appended to the file. So if an object is written to the repository a
PUT tag is written to the file followed by the object id and
data. If an object is deleted a DELETE tag is appended
followed by the object id. A COMMIT tag is written when a
repository transaction is committed. When a repository is opened any
PUT or DELETE operations not followed by a COMMIT tag are
discarded since they are part of a partial/uncommitted transaction.

The manifest

The manifest is an object with an all-zero key that references all the
archives.
It contains:

	version

	list of archive infos

	timestamp

	config

Each archive info contains:

	name

	id

	time

It is the last object stored, in the last segment, and is replaced
each time.

The Archive

The archive metadata does not contain the file items directly. Only
references to other objects that contain that data. An archive is an
object that contains:

	version

	name

	list of chunks containing item metadata (size: count * ~40B)

	cmdline

	hostname

	username

	time

Note about archive limitations

The archive is currently stored as a single object in the repository
and thus limited in size to MAX_OBJECT_SIZE (20MiB).

As one chunk list entry is ~40B, that means we can reference ~500.000 item
metadata stream chunks per archive.

Each item metadata stream chunk is ~128kiB (see hardcoded ITEMS_CHUNKER_PARAMS).

So that means the whole item metadata stream is limited to ~64GiB chunks.
If compression is used, the amount of storable metadata is bigger - by the
compression factor.

If the medium size of an item entry is 100B (small size file, no ACLs/xattrs),
that means a limit of ~640 million files/directories per archive.

If the medium size of an item entry is 2kB (~100MB size files or more
ACLs/xattrs), the limit will be ~32 million files/directories per archive.

If one tries to create an archive object bigger than MAX_OBJECT_SIZE, a fatal
IntegrityError will be raised.

A workaround is to create multiple archives with less items each, see
also #1452 [https://github.com/borgbackup/borg/issues/1452].

The Item

Each item represents a file, directory or other fs item and is stored as an
item dictionary that contains:

	path

	list of data chunks (size: count * ~40B)

	user

	group

	uid

	gid

	mode (item type + permissions)

	source (for links)

	rdev (for devices)

	mtime, atime, ctime in nanoseconds

	xattrs

	acl

	bsdfiles

All items are serialized using msgpack and the resulting byte stream
is fed into the same chunker algorithm as used for regular file data
and turned into deduplicated chunks. The reference to these chunks is then added
to the archive metadata. To achieve a finer granularity on this metadata
stream, we use different chunker params for this chunker, which result in
smaller chunks.

A chunk is stored as an object as well, of course.

Chunks

The Borg chunker uses a rolling hash computed by the Buzhash [https://en.wikipedia.org/wiki/Buzhash] algorithm.
It triggers (chunks) when the last HASH_MASK_BITS bits of the hash are zero,
producing chunks of 2^HASH_MASK_BITS Bytes on average.

borg create --chunker-params CHUNK_MIN_EXP,CHUNK_MAX_EXP,HASH_MASK_BITS,HASH_WINDOW_SIZE
can be used to tune the chunker parameters, the default is:

	CHUNK_MIN_EXP = 19 (minimum chunk size = 2^19 B = 512 kiB)

	CHUNK_MAX_EXP = 23 (maximum chunk size = 2^23 B = 8 MiB)

	HASH_MASK_BITS = 21 (statistical medium chunk size ~= 2^21 B = 2 MiB)

	HASH_WINDOW_SIZE = 4095 [B] (0xFFF)

The buzhash table is altered by XORing it with a seed randomly generated once
for the archive, and stored encrypted in the keyfile. This is to prevent chunk
size based fingerprinting attacks on your encrypted repo contents (to guess
what files you have based on a specific set of chunk sizes).

For some more general usage hints see also --chunker-params.

Indexes / Caches

The files cache is stored in cache/files and is indexed on the
file path hash. At backup time, it is used to quickly determine whether we
need to chunk a given file (or whether it is unchanged and we already have all
its pieces).
It contains:

	age

	file inode number

	file size

	file mtime_ns

	file content chunk hashes

The inode number is stored to make sure we distinguish between
different files, as a single path may not be unique across different
archives in different setups.

The files cache is stored as a python associative array storing
python objects, which generates a lot of overhead.

The chunks cache is stored in cache/chunks and is indexed on the
chunk id_hash. It is used to determine whether we already have a specific
chunk, to count references to it and also for statistics.
It contains:

	reference count

	size

	encrypted/compressed size

The repository index is stored in repo/index.%d and is indexed on the
chunk id_hash. It is used to determine a chunk’s location in the repository.
It contains:

	segment (that contains the chunk)

	offset (where the chunk is located in the segment)

The repository index file is random access.

Hints are stored in a file (repo/hints.%d).
It contains:

	version

	list of segments

	compact

hints and index can be recreated if damaged or lost using check --repair.

The chunks cache and the repository index are stored as hash tables, with
only one slot per bucket, but that spreads the collisions to the following
buckets. As a consequence the hash is just a start position for a linear
search, and if the element is not in the table the index is linearly crossed
until an empty bucket is found.

When the hash table is filled to 75%, its size is grown. When it’s
emptied to 25%, its size is shrinked. So operations on it have a variable
complexity between constant and linear with low factor, and memory overhead
varies between 33% and 300%.

Indexes / Caches memory usage

Here is the estimated memory usage of Borg:

chunk_count ~= total_file_size / 2 ^ HASH_MASK_BITS

repo_index_usage = chunk_count * 40

chunks_cache_usage = chunk_count * 44

files_cache_usage = total_file_count * 240 + chunk_count * 80

	mem_usage ~= repo_index_usage + chunks_cache_usage + files_cache_usage

	= chunk_count * 164 + total_file_count * 240

All units are Bytes.

It is assuming every chunk is referenced exactly once (if you have a lot of
duplicate chunks, you will have less chunks than estimated above).

It is also assuming that typical chunk size is 2^HASH_MASK_BITS (if you have
a lot of files smaller than this statistical medium chunk size, you will have
more chunks than estimated above, because 1 file is at least 1 chunk).

If a remote repository is used the repo index will be allocated on the remote side.

E.g. backing up a total count of 1 Mi (IEC binary prefix i.e. 2^20) files with a total size of 1TiB.

	with create --chunker-params 10,23,16,4095 (custom, like borg < 1.0 or attic):

mem_usage = 2.8GiB

	with create --chunker-params 19,23,21,4095 (default):

mem_usage = 0.31GiB

Note

There is also the --no-files-cache option to switch off the files cache.
You’ll save some memory, but it will need to read / chunk all the files as
it can not skip unmodified files then.

Encryption

AES [https://en.wikipedia.org/wiki/Advanced_Encryption_Standard]-256 is used in CTR mode (so no need for padding). A 64bit initialization
vector is used, a HMAC-SHA256 [https://en.wikipedia.org/wiki/HMAC] is computed on the encrypted chunk with a
random 64bit nonce and both are stored in the chunk.
The header of each chunk is: TYPE(1) + HMAC(32) + NONCE(8) + CIPHERTEXT.
Encryption and HMAC use two different keys.

In AES CTR mode you can think of the IV as the start value for the counter.
The counter itself is incremented by one after each 16 byte block.
The IV/counter is not required to be random but it must NEVER be reused.
So to accomplish this Borg initializes the encryption counter to be
higher than any previously used counter value before encrypting new data.

To reduce payload size, only 8 bytes of the 16 bytes nonce is saved in the
payload, the first 8 bytes are always zeros. This does not affect security but
limits the maximum repository capacity to only 295 exabytes (2**64 * 16 bytes).

Encryption keys (and other secrets) are kept either in a key file on the client
(‘keyfile’ mode) or in the repository config on the server (‘repokey’ mode).
In both cases, the secrets are generated from random and then encrypted by a
key derived from your passphrase (this happens on the client before the key
is stored into the keyfile or as repokey).

The passphrase is passed through the BORG_PASSPHRASE environment variable
or prompted for interactive usage.

Key files

When initialized with the init -e keyfile command, Borg
needs an associated file in $HOME/.config/borg/keys to read and write
the repository. The format is based on msgpack [https://msgpack.org/], base64 encoding and
PBKDF2 [https://en.wikipedia.org/wiki/PBKDF2] SHA256 hashing, which is then encoded again in a msgpack [https://msgpack.org/].

The internal data structure is as follows:

	version

	currently always an integer, 1

	repository_id

	the id field in the config INI file of the repository.

	enc_key

	the key used to encrypt data with AES (256 bits)

	enc_hmac_key

	the key used to HMAC the encrypted data (256 bits)

	id_key

	the key used to HMAC the plaintext chunk data to compute the chunk’s id

	chunk_seed

	the seed for the buzhash chunking table (signed 32 bit integer)

Those fields are processed using msgpack [https://msgpack.org/]. The utf-8 encoded passphrase
is processed with PBKDF2 [https://en.wikipedia.org/wiki/PBKDF2] (SHA256 [https://en.wikipedia.org/wiki/SHA-256], 100000 iterations, random 256 bit salt)
to give us a derived key. The derived key is 256 bits long.
A HMAC-SHA256 [https://en.wikipedia.org/wiki/HMAC] checksum of the above fields is generated with the derived
key, then the derived key is also used to encrypt the above pack of fields.
Then the result is stored in a another msgpack [https://msgpack.org/] formatted as follows:

	version

	currently always an integer, 1

	salt

	random 256 bits salt used to process the passphrase

	iterations

	number of iterations used to process the passphrase (currently 100000)

	algorithm

	the hashing algorithm used to process the passphrase and do the HMAC
checksum (currently the string sha256)

	hash

	the HMAC of the encrypted derived key

	data

	the derived key, encrypted with AES over a PBKDF2 [https://en.wikipedia.org/wiki/PBKDF2] SHA256 key
described above

The resulting msgpack [https://msgpack.org/] is then encoded using base64 and written to the
key file, wrapped using the standard textwrap module with a header.
The header is a single line with a MAGIC string, a space and a hexadecimal
representation of the repository id.

Compression

Borg supports the following compression methods:

	none (no compression, pass through data 1:1)

	lz4 (low compression, but super fast)

	zlib (level 0-9, level 0 is no compression [but still adding zlib overhead],
level 1 is low, level 9 is high compression)

	lzma (level 0-9, level 0 is low, level 9 is high compression).

Speed: none > lz4 > zlib > lzma
Compression: lzma > zlib > lz4 > none

Be careful, higher zlib and especially lzma compression levels might take a
lot of resources (CPU and memory).

The overall speed of course also depends on the speed of your target storage.
If that is slow, using a higher compression level might yield better overall
performance. You need to experiment a bit. Maybe just watch your CPU load, if
that is relatively low, increase compression until 1 core is 70-100% loaded.

Even if your target storage is rather fast, you might see interesting effects:
while doing no compression at all (none) is a operation that takes no time, it
likely will need to store more data to the storage compared to using lz4.
The time needed to transfer and store the additional data might be much more
than if you had used lz4 (which is super fast, but still might compress your
data about 2:1). This is assuming your data is compressible (if you backup
already compressed data, trying to compress them at backup time is usually
pointless).

Compression is applied after deduplication, thus using different compression
methods in one repo does not influence deduplication.

See borg create --help about how to specify the compression level and its default.

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Development

This chapter will get you started with Borg development.

Borg is written in Python (with a little bit of Cython and C for
the performance critical parts).

Contributions

... are welcome!

Some guidance for contributors:

	discuss about changes on github issue tracker, IRC or mailing list

	choose the branch you base your changesets on wisely:
	choose x.y-maint for stuff that should go into next x.y release
(it usually gets merged into master branch later also)

	choose master if that does not apply

	do clean changesets:
	focus on some topic, resist changing anything else.

	do not do style changes mixed with functional changes.

	try to avoid refactorings mixed with functional changes.

	if you need to fix something after commit/push:
	if there are ongoing reviews: do a fixup commit you can
merge into the bad commit later.

	if there are no ongoing reviews or you did not push the
bad commit yet: edit the commit to include your fix or
merge the fixup commit before pushing.

	have a nice, clear, typo-free commit comment

	if you fixed an issue, refer to it in your commit comment

	follow the style guide (see below)

	if you write new code, please add tests and docs for it

	run the tests, fix anything that comes up

	make a pull request on github

	wait for review by other developers

Style guide

We generally follow pep8 [https://www.python.org/dev/peps/pep-0008/], with 120 columns
instead of 79. We do not use form-feed (^L) characters to
separate sections either. Compliance is tested automatically when
you run the tests.

Continuous Integration

All pull requests go through Travis-CI [https://travis-ci.org/borgbackup/borg], which runs the tests on Linux
and Mac OS X as well as the flake8 style checker. Additional Unix-like platforms
are tested on Golem [https://golem.enkore.de/view/Borg/].

Output and Logging

When writing logger calls, always use correct log level (debug only for
debugging, info for informative messages, warning for warnings, error for
errors, critical for critical errors/states).

When directly talking to the user (e.g. Y/N questions), do not use logging,
but directly output to stderr (not: stdout, it could be connected to a pipe).

To control the amount and kinds of messages output to stderr or emitted at
info level, use flags like --stats or --list.

Building a development environment

First, just install borg into a virtual env as described before.

To install some additional packages needed for running the tests, activate your
virtual env and run:

pip install -r requirements.d/development.txt

Running the tests

The tests are in the borg/testsuite package.

To run all the tests, you need to have fakeroot installed. If you do not have
fakeroot, you still will be able to run most tests, just leave away the
fakeroot -u from the given command lines.

To run the test suite use the following command:

fakeroot -u tox # run all tests

Some more advanced examples:

verify a changed tox.ini (run this after any change to tox.ini):
fakeroot -u tox --recreate

fakeroot -u tox -e py34 # run all tests, but only on python 3.4

fakeroot -u tox borg.testsuite.locking # only run 1 test module

fakeroot -u tox borg.testsuite.locking -- -k '"not Timer"' # exclude some tests

fakeroot -u tox borg.testsuite -- -v # verbose py.test

Important notes:

	When using -- to give options to py.test, you MUST also give borg.testsuite[.module].

Regenerate usage files

Usage and API documentation is currently committed directly to git,
although those files are generated automatically from the source
tree.

When a new module is added, the docs/api.rst file needs to be
regenerated:

./setup.py build_api

When a command is added, a commandline flag changed, added or removed,
the usage docs need to be rebuilt as well:

./setup.py build_usage

Building the docs with Sphinx

The documentation (in reStructuredText format, .rst) is in docs/.

To build the html version of it, you need to have sphinx installed:

pip3 install sphinx sphinx_rtd_theme # important: this will install sphinx with Python 3

Now run:

cd docs/
make html

Then point a web browser at docs/_build/html/index.html.

The website is updated automatically through Github web hooks on the
main repository.

Using Vagrant

We use Vagrant for the automated creation of testing environments and borgbackup
standalone binaries for various platforms.

For better security, there is no automatic sync in the VM to host direction.
The plugin vagrant-scp is useful to copy stuff from the VMs to the host.

Usage:

To create and provision the VM:
vagrant up OS
To create an ssh session to the VM:
vagrant ssh OS command
To shut down the VM:
vagrant halt OS
To shut down and destroy the VM:
vagrant destroy OS
To copy files from the VM (in this case, the generated binary):
vagrant scp OS:/vagrant/borg/borg.exe .

Creating standalone binaries

Make sure you have everything built and installed (including llfuse and fuse).
When using the Vagrant VMs, pyinstaller will already be installed.

With virtual env activated:

pip install pyinstaller # or git checkout master
pyinstaller -F -n borg-PLATFORM borg/__main__.py
for file in dist/borg-*; do gpg --armor --detach-sign $file; done

If you encounter issues, see also our Vagrantfile for details.

Note

Standalone binaries built with pyinstaller are supposed to
work on same OS, same architecture (x86 32bit, amd64 64bit)
without external dependencies.

Creating a new release

Checklist:

	make sure all issues for this milestone are closed or moved to the
next milestone

	find and fix any low hanging fruit left on the issue tracker

	check that Travis CI is happy

	update CHANGES.rst, based on git log $PREVIOUS_RELEASE..

	check version number of upcoming release in CHANGES.rst

	verify that MANIFEST.in and setup.py are complete

	python setup.py build_api ; python setup.py build_usage and commit

	tag the release:

git tag -s -m "tagged/signed release X.Y.Z" X.Y.Z

	create a clean repo and use it for the following steps:

git clone borg borg-clean

This makes sure no uncommitted files get into the release archive.
It also will find if you forgot to commit something that is needed.
It also makes sure the vagrant machines only get committed files and
do a fresh start based on that.

	run tox and/or binary builds on all supported platforms via vagrant,
check for test failures

	create a release on PyPi:

python setup.py register sdist upload --identity="Thomas Waldmann" --sign

	close release milestone on Github

	announce on:

	Mailing list

	Twitter (follow @ThomasJWaldmann for these tweets)

	IRC channel (change /topic)

	create a Github release, include:
	standalone binaries (see above for how to create them)
	for OS X, document the OS X Fuse version in the README of the binaries.
OS X FUSE uses a kernel extension that needs to be compatible with the
code contained in the binary.

	a link to CHANGES.rst

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	
 previous |

 	Borg - Deduplicating Archiver 1.0.8 documentation

Borg Contributors (“The Borg Collective”)

	Thomas Waldmann <tw@waldmann-edv.de>

	Antoine Beaupré <anarcat@debian.org>

	Radek Podgorny <radek@podgorny.cz>

	Yuri D’Elia

	Michael Hanselmann <public@hansmi.ch>

	Teemu Toivanen <public@profnetti.fi>

Borg is a fork of Attic.

Attic authors

Attic is written and maintained by Jonas Borgström and various contributors:

Attic Development Lead

	Jonas Borgström <jonas@borgstrom.se>

Attic Patches and Suggestions

	Brian Johnson

	Cyril Roussillon

	Dan Christensen

	Jeremy Maitin-Shepard

	Johann Klähn

	Petros Moisiadis

	Thomas Waldmann

License

Copyright (C) 2015-2016 The Borg Collective (see AUTHORS file)
Copyright (C) 2010-2014 Jonas Borgström <jonas@borgstrom.se>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
 3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Last updated on 2017-01-11.

 Navigation

 	
 modules

 	Borg - Deduplicating Archiver 1.0.8 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 borg	

 	
 	
 borg.logger	

 	
 	
 borg.lrucache	

 	
 	
 borg.shellpattern	

 Last updated on 2017-01-11.

 _modules/index.html

 Navigation

 		
 modules

 		Borg - Deduplicating Archiver 1.0.8 documentation »

 All modules for which code is available

		borg.logger

		borg.lrucache

		borg.shellpattern

 Last updated on 2017-01-11.

_modules/borg/lrucache.html

 Navigation

 		
 modules

 		Borg - Deduplicating Archiver 1.0.8 documentation »

 		Module code »

 Source code for borg.lrucache

[docs]class LRUCache:
 def __init__(self, capacity, dispose):
 self._cache = {}
 self._lru = []
 self._capacity = capacity
 self._dispose = dispose

 def __setitem__(self, key, value):
 assert key not in self._cache, (
 "Unexpected attempt to replace a cached item,"
 " without first deleting the old item.")
 self._lru.append(key)
 while len(self._lru) > self._capacity:
 del self[self._lru[0]]
 self._cache[key] = value

 def __getitem__(self, key):
 value = self._cache[key] # raise KeyError if not found
 self._lru.remove(key)
 self._lru.append(key)
 return value

 def __delitem__(self, key):
 value = self._cache.pop(key) # raise KeyError if not found
 self._dispose(value)
 self._lru.remove(key)

 def __contains__(self, key):
 return key in self._cache

[docs] def clear(self):
 for value in self._cache.values():
 self._dispose(value)
 self._cache.clear()

 # useful for testing
[docs] def items(self):
 return self._cache.items()

 def __len__(self):
 return len(self._cache)

 Last updated on 2017-01-11.

api.html

 Navigation

 		
 modules

 		Borg - Deduplicating Archiver 1.0.8 documentation »

API Documentation

logging facilities

The way to use this is as follows:

		each module declares its own logger, using:

from .logger import create_logger
logger = create_logger()

		then each module uses logger.info/warning/debug/etc according to the
level it believes is appropriate:

logger.debug(‘debugging info for developers or power users’)
logger.info(‘normal, informational output’)
logger.warning(‘warn about a non-fatal error or sth else’)
logger.error(‘a fatal error’)

... and so on. see the logging documentation [https://docs.python.org/3/howto/logging.html#when-to-use-logging]
for more information

		console interaction happens on stderr, that includes interactive
reporting functions like help, info and list

		...except input() is special, because we can’t control the
stream it is using, unfortunately. we assume that it won’t clutter
stdout, because interaction would be broken then anyways

		what is output on INFO level is additionally controlled by commandline
flags

		
borg.logger.create_logger(name=None)[source]

		lazily create a Logger object with the proper path, which is returned by
find_parent_module() by default, or is provided via the commandline

this is really a shortcut for:

logger = logging.getLogger(__name__)

we use it to avoid errors and provide a more standard API.

We must create the logger lazily, because this is usually called from
module level (and thus executed at import time - BEFORE setup_logging()
was called). By doing it lazily we can do the setup first, we just have to
be careful not to call any logger methods before the setup_logging() call.
If you try, you’ll get an exception.

		
borg.logger.find_parent_module()[source]

		find the name of a the first module calling this module

if we cannot find it, we return the current module’s name
(__name__) instead.

		
borg.logger.setup_logging(stream=None, conf_fname=None, env_var='BORG_LOGGING_CONF', level='info', is_serve=False)[source]

		setup logging module according to the arguments provided

if conf_fname is given (or the config file name can be determined via
the env_var, if given): load this logging configuration.

otherwise, set up a stream handler logger on stderr (by default, if no
stream is provided).

if is_serve == True, we configure a special log format as expected by
the borg client log message interceptor.

		
borg.shellpattern.translate(pat)[source]

		Translate a shell-style pattern to a regular expression.

The pattern may include **<sep> (<sep> stands for the platform-specific path separator; “/” on POSIX systems) for
matching zero or more directory levels and “*” for matching zero or more arbitrary characters with the exception of
any path separator. Wrap meta-characters in brackets for a literal match (i.e. “[?]” to match the literal character
”?”).

This function is derived from the “fnmatch” module distributed with the Python standard library.

Copyright (C) 2001-2016 Python Software Foundation. All rights reserved.

TODO: support {alt1,alt2} shell-style alternatives

		
class borg.lrucache.LRUCache(capacity, dispose)[source]

		
		
clear()[source]

		

		
items()[source]

		

 Last updated on 2017-01-11.

_modules/borg/logger.html

 Navigation

 		
 modules

 		Borg - Deduplicating Archiver 1.0.8 documentation »

 		Module code »

 Source code for borg.logger

"""logging facilities

The way to use this is as follows:

* each module declares its own logger, using:

 from .logger import create_logger
 logger = create_logger()

* then each module uses logger.info/warning/debug/etc according to the
 level it believes is appropriate:

 logger.debug('debugging info for developers or power users')
 logger.info('normal, informational output')
 logger.warning('warn about a non-fatal error or sth else')
 logger.error('a fatal error')

 ... and so on. see the `logging documentation
 <https://docs.python.org/3/howto/logging.html#when-to-use-logging>`_
 for more information

* console interaction happens on stderr, that includes interactive
 reporting functions like `help`, `info` and `list`

* ...except ``input()`` is special, because we can't control the
 stream it is using, unfortunately. we assume that it won't clutter
 stdout, because interaction would be broken then anyways

* what is output on INFO level is additionally controlled by commandline
 flags
"""

import inspect
import logging
import logging.config
import logging.handlers # needed for handlers defined there being configurable in logging.conf file
import os
import warnings

configured = False

use something like this to ignore warnings:
warnings.filterwarnings('ignore', r'... regex for warning message to ignore ...')

def _log_warning(message, category, filename, lineno, file=None, line=None):
 # for warnings, we just want to use the logging system, not stderr or other files
 msg = "{0}:{1}: {2}: {3}".format(filename, lineno, category.__name__, message)
 logger = create_logger(__name__)
 # Note: the warning will look like coming from here,
 # but msg contains info about where it really comes from
 logger.warning(msg)

[docs]def setup_logging(stream=None, conf_fname=None, env_var='BORG_LOGGING_CONF', level='info', is_serve=False):
 """setup logging module according to the arguments provided

 if conf_fname is given (or the config file name can be determined via
 the env_var, if given): load this logging configuration.

 otherwise, set up a stream handler logger on stderr (by default, if no
 stream is provided).

 if is_serve == True, we configure a special log format as expected by
 the borg client log message interceptor.
 """
 global configured
 err_msg = None
 if env_var:
 conf_fname = os.environ.get(env_var, conf_fname)
 if conf_fname:
 try:
 conf_fname = os.path.abspath(conf_fname)
 # we open the conf file here to be able to give a reasonable
 # error message in case of failure (if we give the filename to
 # fileConfig(), it silently ignores unreadable files and gives
 # unhelpful error msgs like "No section: 'formatters'"):
 with open(conf_fname) as f:
 logging.config.fileConfig(f)
 configured = True
 logger = logging.getLogger(__name__)
 logger.debug('using logging configuration read from "{0}"'.format(conf_fname))
 warnings.showwarning = _log_warning
 return None
 except Exception as err: # XXX be more precise
 err_msg = str(err)
 # if we did not / not successfully load a logging configuration, fallback to this:
 logger = logging.getLogger('')
 handler = logging.StreamHandler(stream)
 if is_serve:
 fmt = '$LOG %(levelname)s Remote: %(message)s'
 else:
 fmt = '%(message)s'
 handler.setFormatter(logging.Formatter(fmt))
 logger.addHandler(handler)
 logger.setLevel(level.upper())
 configured = True
 logger = logging.getLogger(__name__)
 if err_msg:
 logger.warning('setup_logging for "{0}" failed with "{1}".'.format(conf_fname, err_msg))
 logger.debug('using builtin fallback logging configuration')
 warnings.showwarning = _log_warning
 return handler

[docs]def find_parent_module():
 """find the name of a the first module calling this module

 if we cannot find it, we return the current module's name
 (__name__) instead.
 """
 try:
 frame = inspect.currentframe().f_back
 module = inspect.getmodule(frame)
 while module is None or module.__name__ == __name__:
 frame = frame.f_back
 module = inspect.getmodule(frame)
 return module.__name__
 except AttributeError:
 # somehow we failed to find our module
 # return the logger module name by default
 return __name__

[docs]def create_logger(name=None):
 """lazily create a Logger object with the proper path, which is returned by
 find_parent_module() by default, or is provided via the commandline

 this is really a shortcut for:

 logger = logging.getLogger(__name__)

 we use it to avoid errors and provide a more standard API.

 We must create the logger lazily, because this is usually called from
 module level (and thus executed at import time - BEFORE setup_logging()
 was called). By doing it lazily we can do the setup first, we just have to
 be careful not to call any logger methods before the setup_logging() call.
 If you try, you'll get an exception.
 """
 class LazyLogger:
 def __init__(self, name=None):
 self.__name = name or find_parent_module()
 self.__real_logger = None

 @property
 def __logger(self):
 if self.__real_logger is None:
 if not configured:
 raise Exception("tried to call a logger before setup_logging() was called")
 self.__real_logger = logging.getLogger(self.__name)
 return self.__real_logger

 def setLevel(self, *args, **kw):
 return self.__logger.setLevel(*args, **kw)

 def log(self, *args, **kw):
 return self.__logger.log(*args, **kw)

 def exception(self, *args, **kw):
 return self.__logger.exception(*args, **kw)

 def debug(self, *args, **kw):
 return self.__logger.debug(*args, **kw)

 def info(self, *args, **kw):
 return self.__logger.info(*args, **kw)

 def warning(self, *args, **kw):
 return self.__logger.warning(*args, **kw)

 def error(self, *args, **kw):
 return self.__logger.error(*args, **kw)

 def critical(self, *args, **kw):
 return self.__logger.critical(*args, **kw)

 return LazyLogger(name)

 Last updated on 2017-01-11.

_modules/borg/shellpattern.html

 Navigation

 		
 modules

 		Borg - Deduplicating Archiver 1.0.8 documentation »

 		Module code »

 Source code for borg.shellpattern

import re
import os

[docs]def translate(pat):
 """Translate a shell-style pattern to a regular expression.

 The pattern may include ``**<sep>`` (<sep> stands for the platform-specific path separator; "/" on POSIX systems) for
 matching zero or more directory levels and "*" for matching zero or more arbitrary characters with the exception of
 any path separator. Wrap meta-characters in brackets for a literal match (i.e. "[?]" to match the literal character
 "?").

 This function is derived from the "fnmatch" module distributed with the Python standard library.

 Copyright (C) 2001-2016 Python Software Foundation. All rights reserved.

 TODO: support {alt1,alt2} shell-style alternatives

 """
 sep = os.path.sep
 n = len(pat)
 i = 0
 res = ""

 while i < n:
 c = pat[i]
 i += 1

 if c == "*":
 if i + 1 < n and pat[i] == "*" and pat[i + 1] == sep:
 # **/ == wildcard for 0+ full (relative) directory names with trailing slashes; the forward slash stands
 # for the platform-specific path separator
 res += r"(?:[^\%s]*\%s)*" % (sep, sep)
 i += 2
 else:
 # * == wildcard for name parts (does not cross path separator)
 res += r"[^\%s]*" % sep
 elif c == "?":
 # ? == any single character excluding path separator
 res += r"[^\%s]" % sep
 elif c == "[":
 j = i
 if j < n and pat[j] == "!":
 j += 1
 if j < n and pat[j] == "]":
 j += 1
 while j < n and pat[j] != "]":
 j += 1
 if j >= n:
 res += "\\["
 else:
 stuff = pat[i:j].replace("\\", "\\\\")
 i = j + 1
 if stuff[0] == "!":
 stuff = "^" + stuff[1:]
 elif stuff[0] == "^":
 stuff = "\\" + stuff
 res += "[%s]" % stuff
 else:
 res += re.escape(c)

 return res + r"\Z(?ms)"

 Last updated on 2017-01-11.

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

_static/comment.png

search.html

 Navigation

 		
 modules

 		Borg - Deduplicating Archiver 1.0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Last updated on 2017-01-11.

_static/plus.png

_static/logo.png
Borg

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

